header advert
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_11 | Pages 12 - 12
1 Aug 2018
Solomon L Bahl J Arnold J Curness K Fraysse F Howie D Thewlis D
Full Access

Subjective outcomes used in THA show outstanding improvements in patient-reported outcomes. However, recent evidence suggests that there may be a disconnect between patient-reported and objectively measured function. The aim of this study was to investigate if physical activity and sleep patterns change from pre- to six months post primary THA.

54 patients scheduled for THA were recruited. Patients were given a wrist-worn accelerometer (GeneActiv, UK) to wear continuously for one week pre-operatively and six weeks, three months and six months post-operatively. The device was also fitted to the patient immediately following surgery to capture data for the first two post-operative weeks. The following parameters were calculated: (1) sleep efficiency; (2) the amount of time (and length of each bout and fragmentation of the activity) spent in sedentary activity; and (3) time spent in light, moderate and vigorous physical activity.

Sedentary activities showed no change in the number, duration or fragmentation (p= 0.382, 0.288, 0.382, respectively). Patients were sedentary for 5–6 bouts/day with each bout lasting 50–76 minutes/day. A significant main effect was identified for time spent in light intensity activities (p=0.049). Prior to surgery, patients spent 201 minutes/day in light intensity activity. This decreased significantly to 133 minutes/day (p=0.025) in the first two postoperative weeks before returning close to pre-operative levels (192 minutes/day) at six weeks (p=0.025). No further changes were observed in light intensity activities. A significant main effect was identified for time spent in moderate intensity activities (p=0.003). Prior to surgery, patients spent 45 minutes/day in moderate intensity activities. This dropped to 18 minutes/day in the first two postoperative weeks (p=0.190). By three months this had increased to 66 minutes/day (p=0.049). No further changes were seen. There were no significant differences in time spent in vigorous intensity activities (p=0.244). Patients spent <1minute/day in vigorous intensity activities.

Sleep efficiency did not change significantly from pre- (82%) to six months post-operative (75%) (p=0.067) − 85% is typically considered good sleep efficiency. Patients discharged to a regional hospital had significantly poorer sleep efficiency than those discharged home (mean difference=14%, p=<0.001) or to a rehabilitation centre (mean difference=15%, p=0.001).

This patient cohort didn't demonstrate an overall improvement in objectively measured physical activity patterns from pre- to six months post-operative. Sleep efficiency, did not improve and remained sub-optimal.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_2 | Pages 13 - 13
1 Feb 2018
Perrin C Bruce-Low S Arnold J Burnet S Holloway S Steele J
Full Access

Background & Purpose

The co-ordinated contraction of the kinetic chain is responsible for the dissipation of force. Weakness in the kinetic chain, such as the posterior oblique sling (POS), may increase the demand on additional muscles, such as the hamstrings, to compensate. The lumbar extensors may be particularly vulnerable in the kinetic chain, as they appear difficult to strengthen due to the dominant hip extensors. Therefore, this study aimed to investigate whether participants with a history of hamstring injuries presented with low back pain because of greater deficits in lumbar extensor strength, and impaired co-ordination of the POS.

Methods

Twenty male footballers were recruited (n: Injured- 9, Controls- 11). Isolated lumbar extension strength, low back pain, and the contraction time of muscles within the POS during a hip extension test were recorded. Participants were then grouped in either the injury or control group.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 169 - 169
1 Jul 2014
Arnold J Mackintosh S Jones S Thewlis D
Full Access

Summary Statement

This study provides preliminary evidence that people with knee osteoarthritis have greater asymmetry in joint loading than healthy controls. Altered loading of the contralateral limb may signify increased risk of injury to other lower limb joints in knee osteoarthritis.

Introduction

Compensatory overloading of other lower limb joints is a potential reason for the non-random evolution of osteoarthritis (OA). In individuals with knee OA altered joint loading exists of the contralateral cognate joints. However, previous studies have neglected the temporal features of asymmetry in joint loading. The study aimed to identify the amount and temporal features of asymmetry in lower limb joint loading in advanced knee OA.