header advert
Results 1 - 5 of 5
Results per page:
The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 325 - 331
1 Mar 2014
Dodds AL Halewood C Gupte CM Williams A Amis AA

There have been differing descriptions of the anterolateral structures of the knee, and not all have been named or described clearly. The aim of this study was to provide a clear anatomical interpretation of these structures. We dissected 40 fresh-frozen cadaveric knees to view the relevant anatomy and identified a consistent structure in 33 knees (83%); we termed this the anterolateral ligament of the knee. This structure passes antero-distally from an attachment proximal and posterior to the lateral femoral epicondyle to the margin of the lateral tibial plateau, approximately midway between Gerdy’s tubercle and the head of the fibula. The ligament is superficial to the lateral (fibular) collateral ligament proximally, from which it is distinct, and separate from the capsule of the knee. In the eight knees in which it was measured, we observed that the ligament was isometric from 0° to 60° of flexion of the knee, then slackened when the knee flexed further to 90° and was lengthened by imposing tibial internal rotation.

Cite this article: Bone Joint J 2014;96-B:325–31.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 7 | Pages 864 - 869
1 Jul 2008
Amis AA Oguz C Bull AMJ Senavongse W Dejour D

Objective patellar instability has been correlated with dysplasia of the femoral trochlea. This in vitro study tested the hypothesis that trochleoplasty would increase patellar stability and normalise the kinematics of a knee with a dysplastic trochlea. Six fresh-frozen knees were loaded via the heads of the quadriceps. The patella was displaced 10 mm laterally and the displacing force was measured from 0° to 90° of flexion. Patellar tracking was measured from 0° to 130° of knee flexion using magnetic sensors. These tests were repeated after raising the central anterior trochlea to simulate dysplasia, and repeated again after performing a trochleoplasty on each specimen. The simulated dysplasia significantly reduced stability from that of the normal knee (p < 0.001). Trochleoplasty significantly increased the stability (p < 0.001), so that it did not then differ significantly from the normal knee (p = 0.244). There were small but statistically significant changes in patellar tracking (p< 0.001).

This study has provided objective biomechanical data to support the use of trochleoplasty in the treatment of patellar instability associated with femoral trochlear dysplasia.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 1 | Pages 36 - 40
1 Jan 2005
Mountney J Senavongse W Amis AA Thomas NP

The tensile strength of the medial patellofemoral ligament (MPFL), and of surgical procedures which reconstitute it, are unknown. Ten fresh cadaver knees were prepared by isolating the patella, leaving only the MPFL as its attachment to the medial femoral condyle. The MPFL was either repaired by using a Kessler suture or reconstructed using either bone anchors or one of two tendon grafting techniques. The tensile strength and the displacement to peak force of the MPFL were then measured using an Instron materials-testing machine.

The MPFL was found to have a mean tensile strength of 208 N (SD 90) at 26 mm (SD 7) of displacement. The strengths of the other techniques were: sutures alone, 37 N (SD 27); bone anchors plus sutures, 142 N (SD 39); blind-tunnel tendon graft, 126 N (SD 21); and through-tunnel tendon graft, 195 N (SD 66). The last was not significantly weaker than the MPFL itself.


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 5 | Pages 674 - 681
1 Jul 2004
Robinson JR Sanchez-Ballester J Bull AMJ Thomas RDWM Amis AA

We have reviewed the literature on the anatomy of the posteromedial peripheral ligamentous structures of the knee and found differing descriptions. Our aim was to clarify the differing descriptions with a simplified interpretation of the anatomy and its contribution to the stability of the knee.

We dissected 20 fresh-frozen cadaver knees and the anatomy was recorded using video and still digital photography. The anatomy was described by dividing the medial collateral ligament (MCL) complex into thirds, from anterior to posterior and into superficial and deep layers. The main passive restraining structures of the posteromedial aspect of the knee were found to be superficial MCL (parallel, longitudinal fibres), the deep MCL and the posteromedial capsule (PMC). In the posterior third, the superficial and deep layers blend. Although there are oblique fibres (capsular condensations) running posterodistally from femur to tibia, no discrete ligament was seen. In extension, the PMC appears to be an important functional unit in restraining tibial internal rotation and valgus.

Our aim was to clarify and possibly simplify the anatomy of the posteromedial structures. The information would serve as the basis for future biomechanical studies to investigate the contribution of the posteromedial structures to joint stability.


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 6 | Pages 846 - 851
1 Aug 2002
Gupte CM Smith A McDermott ID Bull AMJ Thomas RD Amis AA

The meniscofemoral ligaments were studied in 84 fresh-frozen knees from 49 cadavers. Combined anterior and posterior approaches were used to identify the ligaments. In total, 78 specimens (93%) contained at least one meniscofemoral ligament. The anterior meniscofemoral ligament (aMFL) was present in 62 specimens (74%), and the posterior meniscofemoral ligament (pMFL) in 58 (69%). The 42 specimens (50%) in which both ligaments were present were from a significantly younger population than that with one MFL or none (p < 0.05). Several anatomical variations were identified, including oblique fibres of the posterior cruciate ligament (PCL), which were seen in 16 specimens (19%). These were termed the ‘false pMFL’.

The high incidence of MFLs and their anatomical variations should be borne in mind during arthroscopic and radiological examination of the PCL. It is important to recognise the oblique fibres of the PCL on MRI in order to avoid wrongly identifying them as either a pMFL or a tear of the lateral meniscus. The increased incidence of MFLs in younger donors suggests that they degenerate with age.