header advert
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 52 - 52
1 Aug 2020
Abuhantash M Rauch F Rak J Hamdy RC Al-Jallad H
Full Access

Osteogenesis Imperfecta (OI) is a heritable bone disorder characterized by bone fragility and often caused by mutations in the Type I collagen-encoding genes COL1A1 and COL1A2. The pathophysiology of OI, particularly at the cellular level, is still not well understood. This contributes to the lack of a cure for this disorder as well as an effective preventive or management options of its complications. In the bone environment, mesenchymal stem cells (MSCs) and osteoblasts (Ob) exert their function, at least partially, through the secretion of extracellular vesicles (EV). EV is a heterogeneous group of nanosized membrane-enclosed vesicles that carry/transfer a cargo of proteins, lipid and nucleic acids from the secreting cell to its target cells. Our objective is to characterize EVs secreted by human control (HC)- and OI-MSCs and their derived Obs, with focus on their protein content. We hypothesize that there will be differences in the protein content of EVs secreted by OI-Obs compared to HC-Ob, which may indicate a deviation from healthy Ob behavior and, thus, a role in OI pathophysiology.

MSCs were harvested from the adipose tissue of four COL1A1-OI and two HC patients. They were proliferated in an EV-depleted media, then induced to differentiate to extracellular matrix (ECM)-producing osteoblasts, which then gets mineralized. EVs secreted by MSCs (MSC-EV) and Obs (Ob-EV) were then purified and concentrated.

Using liquid chromatography- tandem mass spectrometry, proteomic analysis of the EV groups was done. A total of 384 unique proteins were identified in all EVs, 373 were found in Vesiclepedia indicating a good enrichment of our samples with EV proteins. 67 proteins of the total 384 were exclusively or significantly upregulated (p-value < 0 .05) in OI-Ob-EV and 28 proteins in the HC-Ob-EVs, relative to each other. These two groups of differentially expressed proteins were compared by Gene Ontology (GO) analysis of their cellular compartment, molecular functions and biological processes. We observed that there were differences in the cellular origin of EV-proteins, which may indicate heterogeneity of the isolated EVs. Molecular function and biological process analyses of the HC-Ob-EV proteins showed, as expected, predominantly calcium-related activities such as extracellular matrix (ECM) mineralization. OI-Ob-EV proteins were still predominantly exhibiting ECM organization and formation functions. Annexins A1,2,4,5 and 6 were differentially and significantly upregulated by the HC-Ob-EVs. Fibronectin (FN), Fibulin-1 and −2, and Laminins (α4 & γ1), which are amongst the early non-collagenous proteins to form the ECM, were differentially and significantly upregulated in the OI-Ob-EVs.

We concluded that the persistent expression of Fibronectin (FN), Fibulin-1 and −2, and Laminins in OI-Ob-EVs might indicate the presence of an immature ECM that the OI-Obs are trying to organize. ECM mineralization is largely dependent on the presence of an organized mature ECM, and this being compromised in OI bone environment, may be a contributor to the bone fragility seen in these patients. Annexins, which are calcium-binders that are vital for ECM mineralization, were significantly downregulated in the OI-Ob-EVs and this may be a further contributor to ECM mineralization impairment and bone fragility.


Bone & Joint Research
Vol. 7, Issue 6 | Pages 397 - 405
1 Jun 2018
Morcos MW Al-Jallad H Li J Farquharson C Millán JL Hamdy RC Murshed M

Objectives

Bone fracture healing is regulated by a series of complex physicochemical and biochemical processes. One of these processes is bone mineralization, which is vital for normal bone development. Phosphatase, orphan 1 (PHOSPHO1), a skeletal tissue-specific phosphatase, has been shown to be involved in the mineralization of the extracellular matrix and to maintain the structural integrity of bone. In this study, we examined how PHOSPHO1 deficiency might affect the healing and quality of fracture callus in mice.

Methods

Tibial fractures were created and then stabilized in control wild-type (WT) and Phospho1-/- mice (n = 16 for each group; mixed gender, each group carrying equal number of male and female mice) at eight weeks of age. Fractures were allowed to heal for four weeks and then the mice were euthanized and their tibias analyzed using radiographs, micro-CT (μCT), histology, histomorphometry and three-point bending tests.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 10 - 10
1 Nov 2016
Morcos M Al-Jallad H Millan J Hamdy R Murshed M
Full Access

Bone fracture healing is regulated by a series of complex physicochemical and biochemical processes. One of these processes is bone mineralisation, which is vital for normal bone development, its biomechanical competence and fracture healing. Phosphatase, orphan 1 (PHOSPHO1), a bone-specific phosphatase, has been shown to be involved in the mineralisation of the extracellular matrix in bone. It can hydrolyse phosphoethanolamine and phosphocholine to generate inorganic phosphate, which is crucial for bone mineralisation. Phospho1−/− mice show hypomineralised bone and spontaneous fractures. All these data led to the hypothesis that PHOSPHO1 is essential for bone mineralisation and its structural integrity. However, no study to our knowledge has shown the effects of PHOSPHO1 on bone fracture healing. In this study, we examined how PHOSPHO1-deficiency might affect the healing and quality of the fractured bones in Phospho1−/− mice.

We performed rodded immobilised fracture surgery on the right tibia of control wild type (WT) and Phospho1−/− mice (n=16 for each group) at eight weeks of age. Bone was left to heal for four weeks and then the mice were euthanised and their tibias were analysed using Faxitron X-ray analyses, microCT, histology and histomorphometry and three-point bending test.

Our microCT and X-ray analyses revealed that the appearance of the callus and several static parameters of bone remodeling at the fracture sites were markedly different in WT and Phospho1−/− mice. We observed a significant increase of BS/BV, BS/TV and trabecular number and decrease in trabecular thickness and separation in Phospho1−/− callus in comparison to the WT callus. These observations were further confirmed by histomorphometry. The increased bone mass at the fracture sites of Phospho1−/− mice appears to be caused by increased bone formation as there is a significant increase of osteoblast number, while osteoclast numbers remained unchanged. There was a marked increase of osteoid volume over bone volume (OV/BV) in the Phospho−/− callus. Interestingly, the amount of osteoid was markedly higher at the fracture sites than that of normal trabecular bones. The three-point bending test showed that Phospho 1 −/− fractured bone had more of an elastic characteristics than the WT bone as they underwent more of a plastic deformity before the breakage point compare to the WT.

Our work suggests that PHOSPHO1 plays an integral role during bone fracture repair. PHOSPHO1 can be an interesting target to improve the fracture healing process.