header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 154 - 154
1 Jul 2014
Kurtz S Zielinska O MacDonald D Cates H Mont M Malkani A Parvizi J Kraay M Rimnac C Klein G
Full Access

Summary Statement

This study assesses oxidation, mechanical behavior and revision reasons of 2nd generation HXLPE used in total hip and knee arthroplasty. While oxidation was low for both X3 and E1 HXLPEs, oxidative regional variations were detected in the sequentially annealed cohort.

Introduction

First generation highly crosslinked polyethylenes (HXPLEs) have proven successful in lowering both penetration and osteolysis rates. However, 1st generation annealing and remelting thermal stabilization have been associated with in vivo oxidation or reduced mechanical properties. Thus, 2nd generation HXLPEs were developed to improve oxidative stability while still maintaining material properties. Little is known about the in vivo clinical failure modes of these 2nd generation HLXPEs. The purpose of this study was to assess the revision reasons, wear, oxidative stability, and mechanical behavior of retrieved sequentially annealed Vitamin E diffused HXLPE in THA and TKA.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 386 - 386
1 Dec 2013
Kurtz S Zielinska O MacDonald D Cates H Mont M Malkani AL Parvizi J Rimnac C
Full Access

Introduction:

First generation highly crosslinked polyethylenes (HXPLEs) have proven successful in lowering both penetration and osteolysis rates. However, 1st generation annealing and remelting thermal stabilization have been associated with in vivo oxidation or reduced mechanical properties. Thus, 2nd generation HXLPEs were developed to improve oxidative stability while still maintaining material properties. Little is known about the in vivo clinical failure modes of these 2nd generation HLXPEs.

The purpose of this study was to assess the revision reasons, wear, oxidative stability, and mechanical behavior of retrieved sequentially annealed Vitamin E diffused HXLPE in THA and TKA.

Methods:

251 2nd Generation HXLPE hip and knee components were consecutively retrieved during revision surgeries and continuously analyzed in a prospective, IRB approved, multicenter study. 123 acetabular liners (Implanted 1.2y; Range 0–5.0y) and 117 tibial inserts (Implanted 1.6y; Range 0–5.8y) were highly crosslinked and annealed in 3 sequential steps (X3). Five acetabular liners (Implanted 0.6y; Range 0–2.0y) and six tibial inserts (Implanted 1.3y; Range 0.5–1.8y) were diffused with Vitamin E (E1). Patient information was collected from medical records (Table 1).

Linear penetration of liners was measured using a calibrated digital micrometer (accuracy: 0.001 mm). Surface damage of tibial components was assessed using the Hood method. Thin sections were taken from the acetabular liners (along the superior/inferior axis) and the tibial components (along the medial condyle and central spine) for oxidation analysis and analyzed according to ASTM 2102. Mechanical behavior was assessed via the small punch test (ASTM 2183).