header advert
Results 1 - 4 of 4
Results per page:
Bone & Joint Research
Vol. 7, Issue 11 | Pages 587 - 594
1 Nov 2018
Zhang R Li G Zeng C Lin C Huang L Huang G Zhao C Feng S Fang H

Objectives

The role of mechanical stress and transforming growth factor beta 1 (TGF-β1) is important in the initiation and progression of osteoarthritis (OA). However, the underlying molecular mechanisms are not clearly known.

Methods

In this study, TGF-β1 from osteoclasts and knee joints were analyzed using a co-cultured cell model and an OA rat model, respectively. Five patients with a femoral neck fracture (four female and one male, mean 73.4 years (68 to 79)) were recruited between January 2015 and December 2015. Results showed that TGF-β1 was significantly upregulated in osteoclasts by cyclic loading in a time- and dose-dependent mode. The osteoclasts were subjected to cyclic loading before being co-cultured with chondrocytes for 24 hours.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 125 - 125
1 Nov 2018
Zhao C
Full Access

A rotator cuff tear is one of the most common traumatic and degenerative tendon injuries resulting in over 4.5 million physician visits in the US alone. Functional restoration of rotator cuff defects usually requires surgical repair, estimated at 300,000 cased in the US annually. However, postoperative retear of repaired tendons ranges from 20% in small to medium tears to over 90% in large and massive tears. Recently, augmentation with grafting materials to strengthen a reparable tear or to bridge an unrepairable defect has become a common and attractive strategy to reduce the retear rate, especially for large or massive tears. Current graft materials, however, have encountered great challenges in achieving these goals. To meet these challenges, we have developed an engineered tendon with layered tendon-fibrocartilage-bone composite (TFBC) from patellar-tibia unit revitalized by seeding bone marrow derived stem cells (BMDSCs) within the slices, and then reassembled to an engineered tendon. Both in vitro and in vivo results have shown that engineered TFBC enhance the biomechanical strength and biological healing using canine model.


Bone & Joint Research
Vol. 6, Issue 3 | Pages 179 - 185
1 Mar 2017
Wu JH Thoreson AR Gingery A An KN Moran SL Amadio PC Zhao C

Objectives

The present study describes a novel technique for revitalising allogenic intrasynovial tendons by combining cell-based therapy and mechanical stimulation in an ex vivo canine model.

Methods

Specifically, canine flexor digitorum profundus tendons were used for this study and were divided into the following groups: (1) untreated, unprocessed normal tendon; (2) decellularised tendon; (3) bone marrow stromal cell (BMSC)-seeded tendon; and (4) BMSC-seeded and cyclically stretched tendon. Lateral slits were introduced on the tendon to facilitate cell seeding. Tendons from all four study groups were distracted by a servohydraulic testing machine. Tensile force and displacement data were continuously recorded at a sample rate of 20 Hz until 200 Newton of force was reached. Before testing, the cross-sectional dimensions of each tendon were measured with a digital caliper. Young’s modulus was calculated from the slope of the linear region of the stress-strain curve. The BMSCs were labeled for histological and cell viability evaluation on the decellularized tendon scaffold under a confocal microscope. Gene expression levels of selected extracellular matrix tendon growth factor genes were measured. Results were reported as mean ± SD and data was analyzed with one-way ANOVAs followed by Tukey’s post hoc multiple-comparison test.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 263 - 263
1 Jul 2014
Imai K Ikoma K Gay R Hirano T Ozasa Y Chen Q An K Zhao C
Full Access

Summary Statement

ASTM therapy is commonly used to treat Achilles tendinopaty. However, there was no report to evaluate the biomechanical effects, especially the dynamic viscoelasticity. We have shown that ASTM treatment was biomechanically useful for chronic Achilles tendinopathy in an animal model.

Introduction

Achilles tendinopathy is a common chronic overuse injury. Because Achilles tendon overuse injury takes place in sports and there has been a general increase in the popularity of sports activities, the number and incidence of Achilles tendon overuse injury has increased. Augmented Soft Tissue Mobilization (ASTM) therapy is a modification of traditional soft tissue mobilization and has been used to treat a variety of musculoskeletal disorders. ASTM therapy is thought to promote collagen fiber realignment and hasten tendon repair. It might also change the biomechanical behavior of the injured tendon, especially the dynamic viscoelasticity. The purpose of this study is to evaluate the effect of ASTM therapy in a rabbit model of Achilles tendinopathy by quantifying dynamic biomechanical properties and histologic features.