header advert
Results 1 - 3 of 3
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 56 - 56
1 Feb 2021
Catani F Illuminati A Ensini A Zambianchi F Bazzan G
Full Access

Introduction

Robotics have been applied to total knee arthroplasty (TKA) to improve surgical precision in component placement and joint function restoration. The purpose of this study was to evaluate prosthetic component alignment in robotic arm-assisted (RA)-TKA performed with functional alignment and intraoperative fine-tuning, aiming for symmetric medial and lateral gaps in flexion/extension. It was hypothesized that functionally aligned RA-TKA the femoral and tibial cuts would be performed in line with the preoperative joint line orientation.

Methods

Between September 2018 and January 2020, 81 RA cruciate retaining (CR) and posterior stabilized (PS) TKAs were performed at a single center. Preoperative radiographs were obtained, and measures were performed according to Paley's. Preoperatively, cuts were planned based on radiographic epiphyseal anatomies and respecting ±3° boundaries from neutral coronal alignment. Intraoperatively, the tibial and femoral cuts were modified based on the individual soft tissue-guided fine-tuning, aiming for symmetric medial and lateral gaps in flexion/extension. Robotic data were recorded.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 17 - 17
1 Feb 2021
Catani F Marcovigi A Zambianchi F
Full Access

Introduction

Dislocation is a major cause of Total Hip Arthroplasty (THA) early failure and is highly influenced by surgical approach and component positioning. Robotic assisted arthroplasty has been developed to improve component positioning and therefore reduce post-operative complications.

The purpose of this study was to assess dislocation rate in robotic total hip arthroplasty performed with three different surgical approaches.

Methods

All patients undergoing Robotic Arm-Assisted THA at three centers between 2014 and 2019 were included for assessment. After exclusion, 1059 patients were considered; an anterior approach was performed in 323 patients (Center 2), lateral approach in 394 patients (Center 1 and Center 2) and posterior approach in 394 patients (Center 1 and Center 3).

Episodes of THA dislocation at 6 months of follow up were recorded. Stem anteversion, Cup anteversion, Cup inclination and Combined Anteversion were collected with the use of the integrated navigation system.

Cumulative incidence (CI), incidence rate (IR) and risk ratio (RR) were calculated with a confidence interval of 95%.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 73 - 73
1 Feb 2020
Catani F Ensini A Zambianchi F Illuminati A Matveitchouk N
Full Access

Introduction

Robotics have been applied to total knee arthroplasty (TKA) to improve surgical precision in components’ placement, providing a physiologic ligament tensioning throughout knee range of motion. The purpose of the present study is to evaluate femoral and tibial components’ positioning in robotic-assisted TKA after fine-tuning according to soft tissue tensioning, aiming symmetric and balanced medial and lateral gaps in flexion/extension.

Materials and Methods

Forty-three consecutive patients undergoing robotic-assisted TKA between November 2017 and November 2018 were included. Pre-operative radiographs were performed and measured according to Paley's. The tibial and femoral cuts were performed based on the individual intra-operative fine-tuning, checking for components’ size and placement, aiming symmetric medial and lateral gaps in flexion/extension. Cuts were adapted to radiographic epiphyseal anatomy and respecting ±2° boundaries from neutral coronal alignment. Robotic data were recorded, collecting information relative to medial and lateral gaps in flexion and extension.