header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 29 - 29
1 Jul 2020
Tee CA Yang Z Yin L Wu Y Denslin V Ren X Lim CT Han J Lee EH
Full Access

The zonal organization of articular cartilage is crucial in providing the tissue with mechanical properties to withstand compression and shearing force. Current treatments available for articular cartilage injury are not able to restore the hierarchically organized architecture of the tissue. Implantation of zonal chondrocyte as a multilayer tissue construct could overcome the limitation of current treatments. However, it is impeded by the lack of efficient zonal chondrocyte isolation protocol and dedifferentiation of chondrocytes during expansion on tissue culture plate (TCP). This study aims to develop a protocol to produce an adequate number of high-quality zonal chondrocytes for clinical application via size-based zonal chondrocyte separation using inertial spiral microchannel device and expansion under dynamic microcarrier culture.

Full thickness (FT) chondrocytes isolated from porcine femoral condyle cartilage were subjected to two serial of size-based sorting into three subpopulations of different cell sizes, namely small (S1), medium (S2), and large (S3) chondrocytes. Zonal phenotype of the three subpopulations was characterised. To verify the benefit of stratified zonal chondrocyte implantation in the articular cartilage regeneration, a bilayer hydrogel construct composed of S1 chondrocytes overlaying a mixture of S2 and S3 (S2S3) chondrocytes was delivered to the rat osteochondral defect model. For chondrocyte expansion, two dynamic microcarrier cultures, sort-before-expansion and sort-after-expansion, which involved expansion after or before zonal cells sorting, were studied to identify the best sort-expansion strategy.

Size-sorted zonal chondrocytes showed zone-specific characteristics in qRT-PCR with a high level of PRG4 expression in S1 and high level of aggrecan, Type II and IX collagen expression in S2 and S3. Cartilage reformation capability of sorted zonal chondrocytes in three-dimensional fibrin hydrogel showed a similar trend in qRT-PCR, histology, extracellular matrix protein quantification and mechanical compression test, indicating the zonal characteristics of S1, S2 and S3 as superficial (SZ), middle (MZ) and deep (DZ) zone chondrocytes, respectively. Implantation of bilayered zonal chondrocytes resulted in better cartilage tissue regeneration in a rat osteochondral defect model than FT control group, with predominantly Type II hyaline cartilage tissue and significantly lower Type I collagen. Dynamic microcarrier expansion of sorted zonal chondrocytes was able to retain the zonal cell size difference that correlate to zonal phenotype, while maintaining the rounded chondrocyte morphology and F-actin distribution similar to that in mature articular cartilage. With the better retention of zonal cell size and zonal phenotype relation on microcarrier, zonal cells separation was achievable in the sort-after-expansion strategy with cells expanded on microcarrier, in comparison to cells expanded on TCP.

Inertial spiral microchannel device provides a label-free and high throughput method to separate zonal chondrocytes based on cell size. Stratified implantation of zonal chondrocytes has the potential to improve articular cartilage regeneration. Dynamic microcarrier culture allows for size-based zonal chondrocyte separation to be performed on expanded chondrocytes, thus overcoming the challenge of limited tissue availability from the patients. Our novel zonal chondrocyte isolation and expansion protocol provide a translatable strategy for stratified zonal chondrocyte implantation that could improve articular cartilage regeneration of critical size defects.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 330 - 330
1 May 2009
Wang Y Yin L Li Y Liu P Cui Q
Full Access

Introduction: Alcohol can induce adipogenesis by bone marrow stromal cells and may cause osteonecrosis of the femoral heads. Currently, there are no medications available to prevent alcohol-induced osteonecrosis. The purpose of this study was to evaluate the effects of puerarin on adipocytic differentiation of bone marrow stromal cells and on the prevention of alcohol-induced osteonecrosis.

Materials and Methods: In the in vitro study, bone marrow stromal cells were treated with ethanol as model groups, with ethanol and puerarin as experimental groups, and without ethanol or puerarin to serve as controls. In the in vivo study, model group mice received ethanol intragastrically and normal saline by intramuscular injection. The experimental group received the same dose of alcohol intragastrically and puerarin by intramuscular injection, and the control group received water intragastrically and normal saline by intramuscular injection daily, for 4, 6, 8, and 10 months, respectively.

Results: It was found that in the in vitro experimental group, the number of adipocytes, contents of triglycerides and levels of PPARĪ³ mRNA expression were significantly decreased, and alkaline phosphatase activity, contents of osteocalcin and levels of osteocalcin mRNA expression were significantly increased compared with cells in model groups. In the in vivo experimental group, cholesterol, and triglyceride in serum were significantly decreased, and alkaline phosphatase activity was significantly higher, compared with the model group. Fat cell hypertrophy and proliferation, thinner and sparse trabeculae, diminished hematopoiesis, and increased empty osteocyte lacunae in the subchondral region of the femoral head were observed in the model groups. However, no significant changes were seen in femoral heads of the experimental and the control group.

Discussion: The results showed that puerarin can inhibit adipogenic differentiation by bone marrow stromal cells both in in vitro in cell culture and in vivo animal experiments. These findings indicate that puerarin can prevent alcohol-induced adipogenesis and osteonecrosis.