header advert
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 41 - 41
11 Apr 2023
Deegan A Lawlor L Yang X Yang Y
Full Access

Our previous research has demonstrated that minor adjustments to in vitro cellular aggregation parameters, i.e. alterations to aggregate size, can influence temporal and spatial mineral depositions within maturing bone cell nodules. What remains unclear, however, is how aggregate size might affect mineralisation within said nodules over long-term in vivo culture.

In this study, we used an osteoblast cell line, MLO-A5, and a primary cell culture, mesenchymal stem cells (MSC), to compare small (approximately 80 µm) with large (approximately 220 µm) cellular aggregates for potential bone nodule development after 8 weeks of culturing in a mouse model (n = 4 each group). In total, 30 chambers were implanted into the intra-peritoneal cavity of 20 male, immunocompromised mice (MF1-Nu/Nu, 4 – 5 weeks old). Nine small or three large aggregates were used per chamber. Neoveil mesh was seeded directly with 2 × 103 cells for monolayer control. At 8 weeks, the animals were euthanised and chambers fixed with formalin. Aggregate integrity and extracellular material growth were assessed via light microscopy and the potential mineralisation was assessed via micro-CT.

Many large aggregates appeared to disintegrate, whilst the small aggregates maintained their form and produced additional extracellular material with increased sizes. Both MLO-A5 cells and MSC cells saw similar results. Interestingly, however, the MSCs were also seen to produce a significantly higher volume of dense material compared to the MLO-A5 cells from micro-CT analysis.

Overall, a critical cell aggregate size appeared to exist balancing optimal tissue growth with oxygen diffusion, and cell source may influence differentiation pathway despite similar experimental parameters. The MSCs, for example, were likely producing bone via the endochondral ossification pathway, whilst the matured bone cells, MLO-A5 cells, were likely producing bone via the intramembranous ossification pathway.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 48 - 48
4 Apr 2023
Yang Y Li Y Pan Q Wang H Bai S Pan X Ling K Li G
Full Access

Treatment for delayed wound healing resulting from peripheral vascular diseases and diabetic foot ulcers remain a challenge. A novel surgical technique named Tibial Cortex Transverse Transport has been developed for treating peripheral ischaemia, with encouraging clinical effects. However, its underlying mechanisms remain unclear. In present study, we aimed to explore the wound healing effects after undergoing this novel technique via multiple ways.

A novel rat model of Tibial Cortex Transverse Transport was established with a designed external fixator and effects on wound healing were investigated. All rats were randomized into 3 groups, with 12 rats per group: sham group (negative control), fixator group (positive control) and Tibial Cortex Transverse Transport group. Laser speckle perfusion imaging, vessel perfusion, histology and immunohistochemistry were used to evaluate the wound healing processes.

Gross and histological examinations showed that Tibial Cortex Transverse Transport technique accelerated wound closure and enhanced the quality of the newly formed skin tissues. In Tibial Cortex Transverse Transport group, HE staining demonstrated a better epidermis and dermis recovery, while immune-histochemical staining showed that Tibial Cortex Transverse Transport technique promoted local collagen deposition. Tibial Cortex Transverse Transport technique also benefited to angiogenesis and immunomodulation. In Tibial Cortex Transverse Transport group, blood flow in the wound area was higher than that ofother groups according to laser speckle imaging with more blood vessels observed. Enhanced neovascularization was seen in the Tibial Cortex Transverse Transport group with double immune-labelling of CD31 and α-SMA. The M2 macrophages at the wound site in the Tibial Cortex Transverse Transport group was also increased.

Tibial cortex transverse transport technique accelerated wound healing through enhanced angiogenesis and immunomodulation.


Bone & Joint Research
Vol. 6, Issue 6 | Pages 385 - 390
1 Jun 2017
Yang Y Lin S Wang B Gu W Li G

Objectives

Distraction osteogenesis (DO) mobilises bone regenerative potential and avoids the complications of other treatments such as bone graft. The major disadvantage of DO is the length of time required for bone consolidation. Mesenchymal stem cells (MSCs) have been used to promote bone formation with some good results.

Methods

We hereby review the published literature on the use of MSCs in promoting bone consolidation during DO.


Bone & Joint Research
Vol. 5, Issue 12 | Pages 594 - 601
1 Dec 2016
Li JJ Wang BQ Fei Q Yang Y Li D

Objectives

In order to screen the altered gene expression profile in peripheral blood mononuclear cells of patients with osteoporosis, we performed an integrated analysis of the online microarray studies of osteoporosis.

Methods

We searched the Gene Expression Omnibus (GEO) database for microarray studies of peripheral blood mononuclear cells in patients with osteoporosis. Subsequently, we integrated gene expression data sets from multiple microarray studies to obtain differentially expressed genes (DEGs) between patients with osteoporosis and normal controls. Gene function analysis was performed to uncover the functions of identified DEGs.


Bone & Joint Research
Vol. 5, Issue 10 | Pages 492 - 499
1 Oct 2016
Li X Li M Lu J Hu Y Cui L Zhang D Yang Y

Objectives

To elucidate the effects of age on the expression levels of the receptor activator of the nuclear factor-κB ligand (RANKL) and osteoclasts in the periodontal ligament during orthodontic mechanical loading and post-orthodontic retention.

Materials and Methods

The study included 20 male Sprague-Dawley rats, ten in the young group (aged four to five weeks) and ten in the adult group (aged 18 to 20 weeks). In each rat, the upper-left first molar was subjected to a seven-day orthodontic force loading followed by a seven-day retention period. The upper-right first molar served as a control. The amount of orthodontic tooth movement was measured after seven-day force application and seven-day post-orthodontic retention. The expression levels of RANKL and the tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts were evaluated on day 7 (end of mechanical force loading) and day 14 (after seven days of post-orthodontic retention). Statistical analysis was performed using the t-test, and significance was set at p < 0.05.