header advert
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_8 | Pages 15 - 15
1 Feb 2013
Ramasamy A Masouros S Newell N Bonner T West A Hill A Clasper J Bull A
Full Access

Current military conflicts are characterised by the use of the Improvised Explosive Device (IED). Improvements in personal protection, medical care and evacuation logistics have resulted in increasing numbers of casualties surviving with complex musculoskeletal injuries, often leading to life-long disability. Thus, there exists an urgent requirement to investigate the mechanism of extremity injury caused by these devices in order to develop mitigation strategies. In addition, the wounds of war are no longer restricted to the battlefield; similar injuries can be witnessed in civilian centres following a terrorist attack.

Key to mitigating such injuries is the ability to deconstruct the complexities of an explosive event into a controlled, laboratory-based environment. In this study, an anti-vehicle underbelly injury simulator, capable of recreating in the laboratory the impulse from an anti-vehicle (AV) explosion, is presented and characterised. Tests were then conducted to assess the simulator's ability to interact with human cadaveric legs. Two mounting conditions were assessed, simulating a typical seated and standing vehicle passenger using instrumented cadaveric lower limbs.

This experimental device, will now allow us (a) to gain comprehensive understanding of the load-transfer mechanisms through the lower limb, (b) to characterise the dissipating capacity of mitigation technologies, and (c) to assess the biofidelity of surrogates.