header advert
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 35 - 35
1 Mar 2017
Mueller J Wentorf F Herbst S
Full Access

Purpose

The goal of Total Ankle Arthroplasty (TAA) is to relieve pain and restore healthy function of the intact ankle. Restoring intact ankle kinematics is an important step in restoring normal function to the joint. Previous robotic laxity testing and functional activity simulation showed the intact and implanted motion of the tibia relative to the calcaneus is similar. However there is limited data on the tibiotalar joint in either the intact or implanted state. This current study compares modern anatomically designed TAA to intact tibiotalar motion.

Method

A robotic testing system including a 6 DOF load cell (AMTI, Waltham, MA) was used to evaluate a simulated functional activity before and after implantation of a modern anatomically designed TAA (Figure 1). An experienced foot and ankle surgeon performed TAA on five fresh-frozen cadaveric specimens. The specimen tibia and fibula were potted and affixed to the robot arm (KUKA Robotics Inc., Augsburg, Germany) while the calcaneus was secured to a fixed pedestal (Figure 1). Passive reflective motion capture arrays were fixed to the tibia and talus and a portable coordinate measuring machine (Hexagon Metrology Group, Stockholm, Sweden) established the location of the markers relative to anatomical landmarks palpated on the tibia. A four camera motion capture system (The Motion Monitor, Innovative Sports Training, Chicago, IL) recorded the movement of the tibia and talus. The tibia was rotated from 30 degrees plantar flexion to 15 degrees dorsiflexion to simulate motions during the stance phase of gait. At each flexion angle the robot found the orientation which zeroed all forces and torques except compressive force, which was either 44N or 200N.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 92 - 92
1 Mar 2017
Wentorf F Parduhn C
Full Access

Introduction

In total knee arthroplasty (TKA), non-cemented implants rely on initial fixation to stabilize the implant in order to facilitate biologic fixation. The initial fixation can be affected by several different factors from type of implant surface, implant design, patient factors, and surgical technique. The initial fixation is traditionally quantified by measuring the motion between the implant and underlying bone during loading (micromotion). Extraction force has also been quantified for cementless devices. The question remains does an increase or decrease in extraction force affect micromotion based on the fact that most loading at the knee joint is in compression. The objective of this research is to investigate if there is any correlation between extraction force and implant micromotion.

Methods

The relationship between extraction force and micromotion was evaluated by performing a series of experiments using a synthetic bone analog and a tibial baseplate with hexagon pegs. Tunnels for the hexagon pegs were machined into the synthetic bone analog with different diameters, from 9.7 to 11.7 mm. The smaller diameter tunnels increase the press fit between the peg and bone.

Sixty-six implants were tested to determine maximum extraction force. The implants were extracted using an electro-mechanical testing frame at a rate of 0.4 inches / minute. Two different types of bone analogs were used for this evaluation. One was an open-cell foam with a density of 12.5 lb/ft3 and the other was a closed-cell foam with a density of 20 lb/ft3.

Twelve TKA implants were tested to determine the maximum anterior-lift off micromotion during a posterior load application. A posterior stabilized polyethylene insert and mating femoral component were used during the loading. The posterior load cycled from 90 to 900 N for 500 cycles. The micromotion was evaluated with the femur at 90 degrees of flexion. Differential Variable Reluctance Transducers (DVRTs) were located under the four corners of the implant to quantify the superior-inferior motion of the implant. A composite synthetic bone analog was used for this evaluation, with open-cell foam (12.5 lb/ft3) on the inside and closed-cell foam (50 lb/ft3) on the outside.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 204 - 204
1 Dec 2013
Wentorf F Bandi M Sauerberg I Mane A
Full Access

Introduction:

Following total knee arthroplasty, patients often complain of an unnatural feeling in their knee joint, which in turn limits their activities [Noble et al, CORR 2006]. To develop an implant design that recreates the motion of the natural knee, both the functional kinematics as well as the laxity of the joint need to be understood. In vitro testing that accurately quantifies the functional kinematics and laxity of the knee joint can facilitate development of implant designs that are more likely to result in a natural feeling, reconstructed knee. The objective of this study is to demonstrate that robotic in vitro testing can produce clinically relevant functional kinematics and joint laxities.

Methods:

All testing was performed using a KUKA (KUKA Robotics, Augsburg, Germany) 6 degree of freedom robotic arm and a six degree of freedom load cell (ATI Industrial Automation, Apex, North Carolina, USA), attached to the arm (Figure 1).

FUNCTIONAL KINEMATICS: Eight cadaveric specimens implanted with contemporary cruciate retaining implants were used for this evaluation. The functional activity, lunge, was simulated using kinematic control for flexion/extension and force-torque control for the other degrees of freedom. The inputs for the force-torque control were obtained from e-tibia data from live patients during the lunge activity [Varadarajan et al, J Biomech 2008]. At a given flexion angle, the robot moved in force-torque control to obtain the desired values within given tolerances (± 2.5N & ± 0.1 Nm). When these tolerances were met the position of femur with respect to the tibia was recorded and the knee flexed to the next level. The lunge simulation began at full extension and ended at 120 degrees of knee flexion, through 1 degree increments. The kinematic data from the contemporary CR implants were compared to in vivo kinematics of patients that were implanted with the same knee replacements performing a lunge activity [Varadarajan et al, Med Eng Phys 2009].

JOINT LAXITY: Eight native, unimplanted knees were used for this evaluation. Joint laxity of the knee joint was evaluated at 0, 30, 60, 90, and 120 degrees of knee flexion by applying various loads to the tibia and quantifying the resulting motion of the tibia. The resulting laxities were compared to various knee laxity studies in the literature.