header advert
Results 1 - 1 of 1
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 22 - 22
1 Apr 2018
Alberton P Vincent TL Aszodi A
Full Access

Background

Osteoarthritis (OA), a common degenerative disorder of synovial joints, is characterized by disruption of the extracellular matrix (ECM) homeostasis with an overall misbalance towards cartilage catabolism. Integrins are alpha/beta heterodimeric transmembrane proteins transmitting chemical and biomechanical signals into the cells. There is a growing consensus that changes of ECM composition by proteolytic degradation of matrix constituents, or alteration of the biomechanical microenvironment of chondrocytes caused by chronic stress or injury significantly increase the risk of OA through the perturbation of integrin signaling. In order to further investigate the role of the b1 integrin subfamily in OA, we have challenged hip cartilage explants dissected for mice lacking beta1 integrins in chondrocytes by cytokines, ECM degradation products or mechanical stimulation.

Methods

Femoral articular cartilages were avulsed from hip joints of 6 weeks old wild type (WT) and b1fl/fl-PrxCre mutant (MT) mice. For the chemically-induced OA-like stimulation, femoral caps were cultured for 3 days in serum-free DMEM/F12 with or without the supplementation of interleukin-1a (IL1a), 120kDa cell-binding fibronectin fragments (120FNf), or tumor necrosis factor-alpha (TNFa) + oncostatin M (OM). Sulphated glycosaminoglycan (sGAG) release of the explants were measured in the supernatants by the 1,9-dimethylmethlene blue (DMMB) assay. Proteoglycan loss was monitored by Safranin-O (SO) staining on cryo-sections of the explants. For the cartilage injury model, avulsed femoral caps were either directly snap-frozen or kept in serum-free DMEM/F12 for 4 hours before snap-freezing. Gene expression changes were analyzed by quantitative RT-PCR using a pre-determined set of genes regulated by injury.