header advert
Results 1 - 6 of 6
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 52 - 52
1 Mar 2021
Harris A O'Grady C Sensiba P Vandenneucker H Huang B Cates H Christen B Hur J Marra D Malcorps J Kopjar B
Full Access

Patients ≤ 55 years have a high primary TKA revision rate compared to patients >55 years. Guided motion knee devices are commonly used in younger patients yet outcomes remain unknown. In this sub-group analysis of a large multicenter study, 254 TKAs with a second-generation guided motion knee implant were performed between 2011–2017 in 202 patients ≤ 55 years at seven US and three European sites. Revision rates were compared with Australian Joint Registry (AOANJRR) 2017 data. Average age 49.7 (range 18–54); 56.4% females; average BMI 34 kg/m2; 67.1% obese; patellae resurfaced in 98.4%. Average follow-up 4.2 years; longest follow-up six years; 27.5% followed-up for ≥ five years. Of eight revisions: total revision (one), tibial plate replacements (three), tibial insert exchanges (four). One tibial plate revision re-revised to total revision. Revision indications were mechanical loosening (n=2), infection (n=3), peri-prosthetic fracture (n=1), and instability (n=2). The Kaplan-Meier revision estimate was 3.4% (95% C.I. 1.7% to 6.7%) at five years compared to AOANJRR rate of 6.9%. There was no differential risk by sex. The revision rate of the second-generation guided motion knee system is lower in younger patients compared to registry controls.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 51 - 51
1 Mar 2021
Harris A O'Grady C Sensiba P Vandenneucker H Huang B Cates H Christen B Hur J Marra D Malcorps J Kopjar B
Full Access

Outcomes for guided motion primary total knee arthroplasty (TKA) in obese patients are unknown. 1,684 consecutive patients underwent 2,059 primary TKAs with a second-generation guided motion implant between 2011–2017 at three European and seven US sites. Of 2,003 (97.3%) TKAs in 1,644 patients with BMI data: average age 64.5 years; 58.4% females; average BMI 32.5 kg/m2; 13.4% had BMI ≥ 40 kg/m2. Subjects with BMI ≥ 40 kg/m2 had longest length of hospital stay (LOS) at European sites; LOS similar at US sites. Subjects with BMI ≥ 40 kg/m2 (P=0.0349) had longest surgery duration. BMI ≥ 40 kg/m2 had more re-hospitalizations or post-TKA reoperations than BMI < 40 kg/m2 (12.7% and 9.2% at five-year post-TKA, P<0.0495). Surgery duration and long-term complication rates are higher in patients with BMI ≥ 40 kg/m2, but device revision risk is not elevated.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 78 - 78
1 Dec 2020
Dandois F Taylan O D'hooge J Vandenneucker H Slane L Scheys L
Full Access

In-situ assessment of collateral ligaments strain could be key to improving total knee arthroplasty outcomes by improving the ability of surgeons to properly balance the knee intraoperatively. Ultrasound (US) speckle tracking methods have shown promise in their capability to measure in-situ soft tissue strain in large tendons but prior work has also highlighted the challenges that arise when attempting to translate these approaches to the in-situ assessment of collateral ligaments strain. Therefore, the aim of this project was to develop and validate an US speckle tracking method to specifically assess in-situ strains of both the MCL and LCL. We hypothesize that coefficients of determination (R2) would be above 0.90 with absolute differences below 0.50% strain for the comparison between US-based and the reference strain, with better results expected for the LCL compared with the MCL.

Five cadaveric legs with total knee implants (NH019 2017-02-03) were submitted to a varus (LCL) and valgus (MCL) ramped loading (0 – 40N). Ultrasound radiofrequency (rf) data and reference surface strains data, obtained with 3D digital image correlation (DIC), were collected synchronously. Prior to processing, US data were qualitatively assessed and specimens displaying substantial imaging artefacts were discarded, leaving five LCL and three MCL specimens in the analysis. Ultrasound rf data were processed in Matlab (The MathWorks, Inc., Natick, MA) with a custom-built speckle tracking approach adapted from a method validated on larger tendons and based on normalized cross-correlation. Digital image correlation data were processed with commercial software VIC3D (Correlated Solutions, Inc., Columbia, SC). To optimize speckle tracking, several tracking parameters were tested: kernel and search window size, minimal correlation coefficient and simulated frame rate. Parameters were ranked according to three comparative measures between US- and DIC-based strains: R2, mean absolute error and strains differences at 40N. Parameters with best average rank were considered as optimal.

To quantify the agreement between US- and DIC-based strain of each specimen, the considered metrics were: R2, mean absolute error and strain differences at 40N. The LCL showed a good agreement with a high average R2 (0.97), small average mean absolute difference (0.37%) and similar strains at 40N (DIC = 2.92 ± 0.10%; US = 2.99 ± 1.16%). The US-based speckle tracking method showed worse performance for the MCL with a lower average correlation (0.55). Such an effect has been observed previously and may relate to the difficulty in acquiring sufficient image quality for tracking the MCL compared to the LCL, which likely arises due to structural or mechanical differences; notably MCL is larger, thinner, more wrapped around the bone and stretches less. However, despite these challenges, the MCL tracking still showed small average mean absolute differences (0.44%) and similar strains at 40N (DIC = 1.48 ± 0.06%; US = 1.44 ± 1.89%).

We conclude that the ultrasound speckle tracking method developed is ready to be used as a tool to assess in-situ strains of LCL. Concerning the MCL strain assessment, despite some promising results in terms of strain differences, further work on acquisition could be beneficial to reach similar performance.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 31 - 31
1 Dec 2020
Shah DS Taylan O Berger P Labey L Vandenneucker H Scheys L
Full Access

Orthopaedic training sessions, vital for surgeons to understand post-operative joint function, are primarily based on passive and subjective joint assessment. However, cadaveric knee simulators, commonly used in orthopaedic research,1 could potentially benefit surgical training by providing quantitative joint assessment for active functional motions. The integration of cadaveric simulators in orthopaedic training was explored with recipients of the European Knee Society Arthroplasty Travelling Fellowship visiting our institution in 2018 and 2019. The aim of the study was to introduce the fellows to the knee joint simulator to quantify the surgeon-specific impact of total knee arthroplasty (TKA) on the dynamic joint behaviour, thereby identifying potential correlations between surgical competence and post-operative biomechanical parameters.

Eight fellows were assigned a fresh-frozen lower limb each to plan and perform posterior-stabilised TKA using MRI-based patient-specific instrumentation. Surgical competence was adjudged using the Objective Structured Assessment of Technical Skills (OSATS) adapted for TKA.2 All fellows participated in the in vitro specimen testing on a validated knee simulator,3 which included motor tasks – passive flexion (0°-120°) and active squatting (35°-100°) – and varus-valgus laxity tests, in both the native and post-operative conditions. Tibiofemoral kinematics were recorded with an optical motion capture system and compared between native and post-operative conditions using a linear mixed model (p<0.05). The Pearson correlation test was used to assess the relationship between the OSATS scores for each surgeon and post-operative joint kinematics of the corresponding specimen (p<0.05).

OSATS scores ranged from 79.6% to 100% (mean=93.1, SD=7.7). A negative correlation was observed between surgical competence and change in post-operative tibial kinematics over the entire range of motion during passive flexion – OSATS score vs. change in tibial abduction (r=−0.87; p=0.003), OSATS score vs. change in tibial rotation (r=−0.76; p=0.02). When compared to the native condition, post-operative tibial internal rotation was higher during passive flexion (p<0.05), but lower during squatting (p<0.033). Post-operative joint stiffness was greater in extension than in flexion, without any correlation with surgical competence.

Although trained at different institutions, all fellows followed certain standard intraoperative guidelines during TKA, such as achieving neutral tibial abduction and avoiding internal tibial rotation,4 albeit at a static knee flexion angle. However, post-operative joint kinematics for dynamic motions revealed a strong correlation with surgical competence, i.e. kinematic variability over the range of passive flexion post-TKA was lower for more skilful surgeons. Moreover, actively loaded motions exhibited stark differences in post-operative kinematics as compared to those observed in passive motions. In vitro testing on the knee simulator also introduced the fellows to new quantitative parameters for post-operative joint assessment.

In conclusion, the inclusion of cadaveric simulators replicating functional joint motions could help quantify training paradigms, thereby enhancing traditional orthopaedic training, as was also the unanimous opinion of all participating fellows in their positive feedback.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 10 | Pages 1466 - 1470
1 Oct 2010
Didden K Luyckx T Bellemans J Labey L Innocenti B Vandenneucker H

The biomechanics of the patellofemoral joint can become disturbed during total knee replacement by alterations induced by the position and shape of the different prosthetic components. The role of the patella and femoral trochlea has been well studied. We have examined the effect of anterior or posterior positioning of the tibial component on the mechanisms of patellofemoral contact in total knee replacement. The hypothesis was that placing the tibial component more posteriorly would reduce patellofemoral contact stress while providing a more efficient lever arm during extension of the knee.

We studied five different positions of the tibial component using a six degrees of freedom dynamic knee simulator system based on the Oxford rig, while simulating an active knee squat under physiological loading conditions. The patellofemoral contact force decreased at a mean of 2.2% for every millimetre of posterior translation of the tibial component. Anterior positions of the tibial component were associated with elevation of the patellofemoral joint pressure, which was particularly marked in flexion > 90°.

From our results we believe that more posterior positioning of the tibial component in total knee replacement would be beneficial to the patellofemoral joint.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 5 | Pages 737 - 742
1 May 2010
Verlinden C Uvin P Labey L Luyckx JP Bellemans J Vandenneucker H

Malrotation of the femoral component is a cause of patellofemoral maltracking after total knee arthroplasty. Its precise effect on the patellofemoral mechanics has not been well quantified. We have developed an in vitro method to measure the influence of patellar maltracking on contact. Maltracking was induced by progressively rotating the femoral component either internally or externally. The contact mechanics were analysed using Tekscan. The results showed that excessive malrotation of the femoral component, both internally and externally, had a significant influence on the mechanics of contact. The contact area decreased with progressive maltracking, with a concomitant increase in contact pressure. The amount of contact area that carries more than the yield stress of ultra-high molecular weight polyethylene significantly increases with progressive maltracking. It is likely that the elevated pressures noted in malrotation could cause accelerated and excessive wear of the patellar button.