header advert
Results 1 - 3 of 3
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 109 - 109
1 Dec 2020
AKTAS E CLEMENTS A CHAMBERLAIN C VANDERBY R MURPHY W
Full Access

Although multifunctional delivery systems can potentially improve safety and efficacy of therapeutic protein delivery in the biological treatment of injured tissues, ability to track and manipulate protein delivery systems in vivo to ensure localization at the treatment site is still a concern.

We hypothesized that incorporating superparamagnetic iron oxide (SPIO) into calcium phosphate (CaP) coated β-tricalcium phosphate (β-TCP) microparticles would allow for Magnetic Resonance Imaging (MRI) based tracking in vivo and SPIO incorporation would not impact the biological activity of proteins delivered with these microparticles.

To address the efficacy and limitations in therapeutic protein delivery, a CaP coated microparticle which incorporates superparamagnetic iron oxide (SPIO-CaP-MP) was created and used in a rat knee medial collateral ligament. The system has trifunctional properties: (1) it is trackable using magnetic resonance imaging (MRI), (2) it can be manipulated with a magnetic field, (3) it can release active proteins in the injury site. SPIO-Ca-MPs were formed on β-tricalcium phosphate cores. Using MRI, SPIO-CaP-MPs were visible in T2 weighted sequences as an area of hypointesive signal. SPIO-CaP-MPs could be visualized and remained localized for at least 15 days after injection into the medial collateral ligament. Recombinant human basic fibroblast growth factor delivered with SPIO-CaP-MPs stimulated the proliferation of human dermal fibroblasts. Finally, SPIO-CaP-MPs could be localized to a bar magnet when suspended in solution. Taken together, these results suggest that SPIO-CaPMPs could be useful for protein delivery applications in the treatment of ligament injury that may benefit from externally controlled localization and MRI-based tracking.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 262 - 262
1 Jul 2014
Saether E Chamberlain C Leiferman E Li W Vanderby R
Full Access

Summary Statement

This study explores the therapeutic use of MSCs to enhance ligament healing from an immuno-modulatory perspective. We report improved healing with MSC treatment, but inconsistent effects on inflammatory markers.

Introduction

Mesenchymal stem cell (MSC) use continues to hold untapped potential as a therapeutic agent because: 1) MSCs have the ability to differentiate into several different connective tissues such as cartilage, bone, muscle and fat (1–3), and 2) MSCs can modulate immune and inflammatory responses that affect healing (4, 5). This paradigm shift from differentiation to immune modulation is being studied for different applications (6). Several studies suggest MSCs decrease inflammation by reducing pro-inflammatory cytokines and changing the macrophage phenotype from M1 (classically-activated) to M2 (alternatively-activated) (7–10). However, their immune-modulatory effects within a healing ligament remain unexplored. MSCs can behave differently depending on the tissue and healing environment they encounter, which leads to our interest in MSC immune-modulation in healing ligaments.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 3 - 3
1 Mar 2010
White J Herzog A Bergersen E Snitzer J Decker J Vanderby R Stampfli HF Kaplan L
Full Access

Purpose: Damage to articular cartilage leads to an incomplete healing response. This has elicited interest in improving the understanding of chondrocyte biology and finding ways to stimulate a more effective repair response. Neuropeptides play a role in the proliferative and reparative processes of many tissue types, but little is known about their effects on articular cartilage. This research aimed to investigate the effect of four neuropeptides on articular chondrocytes.

Method: Bovine chondrocytes were cultivated in monolayer culture in media alone or media containing one of four neuropeptides: NPY, CGRP, SP, and VIP. Enzymatically digested chondrocytes from the articular surface of the femoral trochlea, femoral condyles, and patella of freshly slaughtered veal (n=8) were plated at 1×10^5 cells/mL in DMEM complete media with 5% FCS. Proliferation and proteoglycan assays were conducted at days 2,4,6, and 8.

Results: Substance P showed a statistically significant stimulatory effect on chondrocyte proliferation and proteoglycan production that was greatest at a concentration of 5 μg/ml. NPY and VIP showed a dose dependent suppressive effect on chondrocyte proliferation that was greatest at their highest concentrations and was significant at all time points, with the exception of VIP at day 2. CGRP showed no significant effect on proliferation or proteoglycan production.

Conclusion: Substance P showed a reliable stimulation of chondrocyte proliferation and proteoglycan production while NPY and VIP showed dose-dependent depressive effects. These findings support the idea that the peripheral nervous system, through neuropeptides, exerts direct influence on articular chondrocytes. This may provide some insight into the pathophysiology of inflammatory and degenerative arthritis and provide targets for modifying the repair response of articular cartilage.