header advert
Results 1 - 3 of 3
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 5 - 5
2 Jan 2024
Karaçoban L Gizer M Fidan BB Kaplan O Çelebier M Korkusuz P Turhan E Korkusuz F
Full Access

Osteoarthritis (OA) is a disabling disease depriving the quality of life of patients. Mesenchymal stem cells (MSCs) are recently used to modify the inflammatory and degenerative cascade of the disease. Source of MSCs could change the progression and symptoms of OA due to their different metabolomic activities. We asked whether MSCs derived from the infrapatellar fat (IPF), synovium (Sy) and subcutaneous (SC) tissues will decrease inflammatory and degenerative markers of normal and OA chondrocytes and improve regeneration in culture. Tissues were obtained from three male patients undergoing arthroscopic knee surgery due to sports injuries after ethical board approval. TNFa concentration decreased in all MSC groups (Sy=156,6±79, SC=42,1±6 and IPF=35,5±3 pg/ml; p=0,036) on day 14 in culture. On day seven (Sy=87,4±43,7, SC=23±8,9 and IPF=14,7±3,3 pg/ml, p=0,043) and 14 (Sy=29,1±11,2, SC=28,3±18,5 and IPF=20,3±16,2 pg/ml, p=0,043), MMP3 concentration decreased in all groups. COMP concentration changes however were not significant. Plot scores of tissues for PC2-13,4% were significantly different. Based on the results of liquid chromatography-mass spectrometry (LC-MS) metabolomics coupled with recent data processing strategies, clinically relevant seven metabolites (L-fructose, a-tocotrienol, coproporphyrin, nicotinamide, bilirubin, tauro-deoxycholic acid and galactose-sphingosine) were found statistically different (p<0.05 and fold change>1.5) ratios in tissue samples. Focusing on these metabolites as potential therapeutics could enhance MSC therapies.

Acknowledgment: Hacettepe University, Scientific Research Projects Coordination Unit (#THD-2020-18692) and Turkish Society of Orthopedics and Traumatology (#TOTBID-89) funded this project. Feza Korkusuz MD is a member of the Turkish Academy of Sciences (TÜBA).


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 54 - 54
2 Jan 2024
İlicepinar Ö Imir M Cengiz B Gürses S Menderes Y Turhan E Dönmez G Korkusuz F
Full Access

Hop tests are used to determine return to sports after ACL reconstruction. They mostly measure distance and symmetry but do not assess kinematics and kinetics. Recently, biomechanical evaluations have been incorporated into these functional jump tests for the better assessment of return to sport. We assessed the sagittal plane range of motion (ROM) of the knee, the deviation axis of rotation (DAOR), and the vertical ground reaction force (vGRF) normalized to body weight in nine healthy participants during the single leg (SLH) and crossover hop tests (COHT).

Participants' leg lengths were measured. Jumping distances were marked in the test area as being 4/5 of the leg length. Four sensors were placed on the thighs, the legs and the feet. These body parts were handled as a single rigid body. Eight 480 Hz cameras were used to capture the movements of these rigid bodies. vGRF at landing were measured using a force plate (Bertec, Inc, USA). The ROM of the knee joint and the DAOR were obtained from kinematic data.

Participants' joint kinematics metrics were similar in within-subjects statistical tests for SLH and COHT. We therefore asked whether the repeated vGRF normalized to body weight will be similar in both legs during these jumps. Joint kinematics metrics however were different in between subjects indicating the existence of a personalized jumping strategy. These hop tests can be recorded at the beginning of the training season for each individual, which can establish a comparative evaluation database for prospective lower extremity injury recovery and return to sport after ACL injury.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 32 - 32
1 Dec 2020
Kaymakoglu M Dede EC Korkusuz P Ozdemir E Erden ME Turhan E
Full Access

Adrenomedullin is a peptide hormone that has attracted attention with its proliferative and anti-apoptotic effects on osteoblasts in recent years. We investigated the effect of adrenomedullin on healing of the segmental bone defect in a rat model.

36 Wistar rats were randomly divided in six groups based on follow-up periods and administered dose of adrenomedullin hormone. In each group, a 2 mm bone defect was created at the diaphysis of radius, bilaterally. NaCl solution was administered to sham groups three times a week for 4 and 8 weeks, intraperitoneally. Adrenomedullin was administered to study groups three times a week; 15 µg-4 weeks, 15 µg-8 weeks, 30 µg-4 weeks and 30 µg-8 weeks, respectively. After euthanasia, the segmental defects were evaluated by histomorphometric (new bone area (NBA)) and micro-tomographic (bone volume (BV), bone surface (BS), bone mineral density (BMD)) analysis.

Although 4 and 8 weeks 15 μg administered study groups had higher NBA values than the other study and control groups, histomorphometric analysis did not reveal any statistical difference between the control and study groups in terms of new bone area (p > 0.05). In micro-tomographic analysis, BV was higher in 15 μg – 4 weeks group than 30 μg – 4 weeks group (296.9 vs 208.5, p = 0.003) and BS was lower in 30 μg – 4 weeks than 4 week - control group (695.5 vs 1334.7, p = 0.005) but in overall, no significant difference was found between the control and study groups (p > 0.05). Despite these minor differences in histomorphometric and micro-tomographic criteria indicating new bone formation, BMD values of 15 µg-4 and −8 weeks study groups showed significant increase comparing with the control group (p = 0.04, p = 0.001, respectively).

Adrenomedullin seemed to have a positive effect on BMD at a certain dose (15 µg) but it alone is not considered sufficient for healing of the defect with new bone formation. Further studies are needed to assess its effects on bone tissue trauma.

This study was funded by Hacettepe University Scientific Research Projects Coordination Unit