header advert
Results 1 - 2 of 2
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 124 - 124
1 Feb 2017
Li G Dimitriou D Tsai T Park K Kwon Y Freiberg A Rubash H
Full Access

Introduction

An equal knee joint height during flexion and extension is of critical importance in optimizing soft-tissue balancing following total knee arthroplasty (TKA). However, there is a paucity of data regarding the in-vivo knee joint height behavior. This study evaluated in-vivo heights and anterior-posterior (AP) translations of the medial and lateral femoral condyles before and after a cruciate-retaining (CR)-TKA using two flexion axes: surgical transepicondylar axis (sTEA) and geometric center axis (GCA).

Methods

Eleven patient with advanced medial knee osteoarthritis (age: 51–73 years) who scheduled for a CR TKA and 9 knees from 8 healthy subjects (age: 23–49 years) were recruited. 3D models of the tibia and femur were created from their MR images. Dual fluoroscopic images of each knee were acquired during a weight-bearing single leg lunge. The OA knee was imaged again one year after surgery using the fluoroscopy during the same weight-bearing single leg lunge. The in vivo positions of the knee along the flexion path were determined using a 2D/3D matching technique. The GCA and sTEA were determined based on existing methods. Besides the anterior-posterior translation, the femoral condyle heights were determined using the distances from the medial and lateral epicondyle centers on the sTEA and GCA to the tibial plateau surface in coronal plane (Fig. 1). The paired t-test was applied to compare the medial and lateral condyle motion within each group (Healthy, OA, and CR-TKA). Two-way ANOVA followed post hoc Newman–Keuls test was adopted to detect significant differences among the groups. p<0.05 was considered significant.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 22 - 22
1 Oct 2014
Li G Tsai T Dimitriou D Kwon Y
Full Access

Combined acetabular and femoral anteversion (CA) of the hip following total hip arthroplasty (THA) is critical to the hip function and longevity of the components. However, no study has been reported on the accuracy in restoration of CA of the hip after operation using robotic assistance and conventional free-hand techniques. The purpose of this study was to evaluate if using robotic assistance in THA can better restore native CA than a free-hand technique.

Twenty three unilateral THA patients participated in this study. Twelve of them underwent a robotic-arm assisted THA (RIO® Robotic Arm Interactive Orthopedic System, Stryker Mako., Fort Lauderdale, FL, USA) and eleven received a free-hand THA. Subject specific 3D models of both implanted and non-implanted hips were reconstructed using post-operative CT scans. The anteversion and inclination of the native acetabulum and implanted cup were measured and compared. To determine the differences of the femoral anteversion between sides, the non-implanted native femur was mirrored and aligned with the remaining femur of the implanted side using an iterative closest point algorithm. The angle between the native femoral neck axis and the prosthesis neck axis in transverse plane was measured as the change in femoral anteversion following THA. The sum of the changes of the acetabular and femoral anteversion was defined as the change of CA after THA. A Wilcoxon signed rank test was performed to test if the anteversion of the navigation and free-hand THAs were different from the contralateral native hips (α = 0.05).

The acetabular anteversion were 22.0°±7.4°, 35.9°±6.5° and 32.6°±22.6° for the native hips, robotic assisted THAs and free-hand THAs, respectively, and the corresponding values of the acetabular inclinations were 52.0°±2.9°, 35.4°±4.4° and 43.1°±7.1°. The acetabular anteversion was increased by 12.2°±11.1° (p=0.005) and 12.5°±20.0° (p=0.102) for the robotic assisted and the free-hand THAs. The femoral anteversion was increased by 6.3°±10.5° (p=0.077) and 11.0°±13.4° (p=0.014) for the robotic assisted and free-hand THAs, respectively. The CA were significantly increased by 18.5°±11.7° (p<0.001) and 23.5°±26.5° (p=0.019) for the robotic assisted and the free-hand THAs. The changes of the CA of the free-hand THAs varied in a larger range than those of the robotic assisted THAs.

This study is the first to evaluate the changes in acetabular and femoral anteversions of the hips after robotic assisted and free-hand THAs using the contralateral native hip as a control. The results demonstrate that both the navigation and free-hand THAs significantly increased the CA compared to the contralateral native hips, but the changes of the robotic assisted THAs (18.5°±11.7°) were smaller and varied less than those of the free-hand THAs (23.5°±26.5°). These data suggest that the robotic assisted THA can better restore the native hip CAs with higher repeatability than the free-hand technique. Further studies are needed to investigate the effects of the hip anteversion changes on the in-vivo function of the hip and the long-term outcomes in THA patients.