header advert
Results 1 - 3 of 3
Results per page:
Applied filters
Spine

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 18 - 18
1 Oct 2022
Basatvat S Braun T Snuggs J Williams R Templin M Tryfonidou M Le Maitre C
Full Access

Backgrounds and aim

Low back pain resulting from Intervertebral disc (IVD) degeneration is a serious worldwide problem, with poor treatment options available. Notochordal (NC) cells, are a promising therapeutic cell source with anti-catabolic and regenerative effect, however, their behaviour in the harsh degenerate environment is unknown. Thus, we aimed to investigate and compare their physiological behaviour in in vitro niche that mimics the healthy and degenerated intervertebral disc environment.

Methodology

Porcine NC cells were encapsulated in 3D alginate beads to maintain their phenotype then cultured in media to mimic the healthy and degenerate disc environment, together with control NC media for 1 week. Following which viability using PI and Calcein AM, RNA extraction and RT-PCR for NC cell markers, anabolic and catabolic genes analysed. Proteomic analysis was also performed using Digiwest technology.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 5 - 5
1 Oct 2022
Williams R Snuggs J Schmitz TC Janani R Basatvat S Sammon C Benz K Ito K Tryfonidou M Le Maitre C
Full Access

Objectives

Low back pain is strongly associated with degeneration of the intervertebral disc (IVD). During degeneration, altered matrix synthesis and increased matrix degradation, together with accompanied cell loss is seen particularly in the nucleus pulposus (NP). It has been proposed that notochordal (NC) cells, embryonic precursors for the cells within the NP, could be utilized for mediating IVD regeneration. However, injectable biomaterials are likely to be required to support their phenotype and viability within the degenerate IVD. Therefore, viability and phenotype of NC cells were analysed and compared within biomaterial carriers subjected to physiological oxygen conditions over a four-week period were investigated.

Methodology

Porcine NC cells were incorporated into three injectable hydrogels: NPgel (a L-pNIPAM-co-DMAc hydrogel), NPgel with decellularized NC-matrix powder (dNCM) and Albugel (an albumin/ hyaluronan hydrogel). The NCs and biomaterials constructs were cultured for up to four weeks under 5% oxygen (n=3 biological repeats). Histological, immunohistochemical and glycosaminoglycans (GAG) analysis were performed to investigate NC viability, phenotype and extracellular matrix synthesis and deposition.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_2 | Pages 18 - 18
1 Feb 2018
Snuggs J Day R Chiverton N Cole A Bunning R Conner M Tryfonidou M Le Maitre C
Full Access

Introduction

During development the central disc contains large, vacuolated notochordal (NC) cells which in humans are replaced by mature nucleus pulposus (NP) cells during aging, but are maintained in certain breeds of dogs. During degeneration the disc becomes less hydrated which affects its normal function. Aquaporins (AQP) are a family of 13 transmembrane channel proteins that allow passage of water and are responsible for maintaining water homeostasis. AQP1, 2, 3 and 5 have been identified in the intervertebral disc (IVD). Here, expression of AQPs in human and canine IVDs to determine expression in NC v/s NP cells and whether expression changes during degeneration.

Methods

Gene expression of all 13 AQPs, were investigated in 102 human NP samples using RT-qPCR. AQPs which were expressed at gene level were further investigated by Immunohistochemistry in human and canine IVD samples.