header advert
Results 1 - 1 of 1
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 76 - 76
1 Mar 2021
Tomasina C Mohren R Mulder K Camarero-Espinosa S Cillero-Pastor B Moroni L
Full Access

The extracellular matrix (ECM) is the non-cellular structural support that provides cells with a network of biochemical and biomechanical factors for cellular processes. The ECM regulates cell function, differentiation and homeostasis. Here, we present a proteomics characterization of three commonly used additive manufactured polymers: polylactic acid (PLA), polyactive (PEOT/PBT) and polycaprolactone (PCL).

We cultured human mesenchymal stromal cells (hMSCs) and make them undergo chondrogenic and osteogenic differentiation on 3D printed PCL, PEOT/PBT and PLA scaffolds. hMSCs were cultured in basal, chondrogenic and osteogenic media (200000 cells/scaffold) and analyzed after 35 days of culture. Differentiation was proved through biochemical assays, immunofluorescence and histology. The protein content was explored using label free liquid chromatography mass spectrometry (LC-MS), which revealed upregulated proteins and their related pathways.

A higher difference was found among different media compared to the scaffold type through principal component analysis (PCA). Interestingly, in all three materials, chondrogenesis was characterized by a lower but more diverse amount of proteins. PCL induced ECM production in both differentiation media, but it led to more apoptosis and GAG degradation in the chondrogenic medium compared to the osteogenic one. During chondrogenesis in PEOT/PBT and PLA, cell differentiation resulted in the activation of stress response cascades, collagen formation and ECM remodelling. On the other hand, in osteogenesis, PCL enhanced insulin-like growth factor pathway and fibrin clot related pathways.