header advert
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_1 | Pages 1 - 1
1 Jan 2022
Srinivasan SH Murthy SN Bishnoi AJ Swamy G
Full Access

Abstract

In the pediatric population, scoliosis is classified into congenital, syndromic, idiopathic, and neuromuscular in aetiology. Syndromic scoliosis represents a wide range of systemic anomalies associated with scoliosis. The primary challenge for a clinician is to think beyond the scoliotic curve, as the underlying pathology is multisystemic. The aim of this review is to identify the systemic anomalies, associated with syndromic scoliosis.

MEDLINE, EMBASE, and CINAHL databases were searched, dating from 1990–2020, relevant to the purpose of our study. Keywords used: “scoliosis”+ “syndrome” + “genetic”. Retrospective, prospective studies were included. Case reports that had fewer than 4 patients were not included.

Delineating 60 articles, we found a total of 41 syndromes to be associated with scoliosis. Thoracic region was the most common level of scoliosis curve, being noted in 28 syndromes. Mental retardation, seizures, and ataxia were the commonly noticed CNS anomalies. VSD, ASD, and TGA were the anomalies associated with CVS; Hypotonia, rib and vertebral malformations were the most identified neuromuscular anomalies; pulmonary hypoplasia, renal agenesis, and strabismus were other associations.

A multidisciplinary approach, involving spinal surgeons, paediatricians, geneticists, anesthesiologists, and allied health professionals, is vital for the best care of patients with syndromic scoliosis.

The location of the scoliotic curve reflects the associated anomalies, as thoracic curvature is more closely linked with cardiac anomalies, while lumbosacral curvature is seen to be often linked with genitourinary anomalies. We hope that this article provides a clear overview of the systemic associations in syndromic scoliosis and thus, facilitates and streamlines the management protocol.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_1 | Pages 16 - 16
1 Jan 2022
Srinivasan SH Murthy SN Hourston GJ Swamy G
Full Access

Abstract

Non-operative management of AIS can present practical and psychological challenges, as effective bracing requires a considerable investment of time in adolescence which is a formative point of physical and emotional development. The management team lacks input from the psychological team and thus, it would be prudent for the spinal teams to appreciate and deal with the psychosocial effects associated with bracing.

We sought to investigate how bracing as a part of non-operative management of idiopathic scoliosis, is perceived among adolescents.

We performed a search of CINAHL, Medline, AMED, PsychARTICLES, Psychology and Behavioral Sciences Collection and PsychINFO databases to identify qualitative research investigating the thoughts, feelings and experiences and attitudes of those undergoing bracing for AIS. Keywords used were (((“adoles∗” OR “young pe∗”) AND “idiopathic scoliosis”) AND “brac∗”) AND (“perce∗” OR “experience∗” OR “perspective∗” OR “attitude∗”).

Ten research articles were identified using our search strategy. Only one article addressed our research question specifically. This reported that almost all adolescent patients experienced psychological difficulties during treatment and received most of their support from family and friends rather than health professionals.

Our interpretation of the literature on this subject has yielded three recommendations for service providers. First, the policy ought to change to ensure that psycholological support is engrained within the treatment process; second, more information and advice must be given to patients and their families; and third, health professionals should appreciate and directly address in their consultations the psychological difficulties involved in brace wearing and the need for adequate support.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 33 - 33
1 Aug 2013
Blair-Pattison A Henke J Penny J Hu R Swamy G Anglin C
Full Access

Inserting screws into the vertebral pedicles is a challenging step in spinal fusion and scoliosis surgeries. Errors in placement can lead to neurological complications. The more experienced the surgeon, the better the accuracy of the screw placement. A physical training system would provide residents with the feel of performing pedicle cannulation before operating on a patient. The proposed system consists of realistic bone models mimicking the geometry and material properties of typical patients, coupled with a force feedback probe. The purpose of the present study was to determine the forces encountered during pedicle probing to aid in the development of this training system.

We performed two separate investigations: [1] 15 participants (9 expert surgeons, 3 fellows and 3 residents) were asked to press a standard pedicle awl three times onto a mechanical scale, blinded to the force, demonstrating what force they would apply during safe pedicle cannulation and during unsafe cortical breach; [2] three experienced surgeons used a standard pedicle awl fitted with a one-degree of freedom load cell to probe selected thoracolumbar vertebrae of eight cadaveric specimens to measure the forces required during pedicle cannulation and deliberate breaching. A total of 42 pedicles were tested.

Both studies had wide variations in the results, but were in general agreement. Cannulation (safe) forces averaged approximately 90 N (20 lb) whereas breach (unsafe) forces averaged approximately 135–155 N (30–35 lb). The lowest average forces in the cadaveric study were for pedicle cannulation, averaging 86 N (range, 23–125 N), significantly lower (p<0.001) than for anterior breach (135 N; range, 80–195 N); medial breach (149 N; range, 98–186 N) and lateral breach (157 N; range, 114–228 N). There were no significant differences between the breach forces (p>0.1). Cannulation forces were on average 59% of the breach forces (range, 19–84%) or conversely, breach forces were 70% higher than cannulation forces.

To our knowledge, these axial force data are the first available for pedicle cannulation and breaching. A large range of forces was measured, as is experienced clinically. Additional testing is planned with a six-degree-of-freedom load cell to determine all of the forces and moments involved in cannulation and breaching, throughout the thoracolumbar spine. These results will inform the development of a realistic bone model as well as a breach prediction algorithm for a physical training system for spine surgery.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_27 | Pages 27 - 27
1 Jul 2013
Quah C Syme G Swamy G Nanjayan S Fowler A Calthorpe D
Full Access

Introduction

Given the rising incidence of obesity in the adult population, it is more than likely that orthopaedic surgeons will be treating more obese patients with lumbar disc pathologies. The relationship between obesity and recurrent herniated nucleus pulposus (HNP) following microdiscectomy remains unclear.

Objectives

To investigate the relationship between obesity and recurrent HNP following lumbar microdiscectomy.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 40 - 40
1 Sep 2012
Chou D Swamy G Lewis J Badhe N
Full Access

Multiple reports suggest good outcome results following unicompartmental knee replacement (UKR). However, several authors report technically difficult revision surgery secondary to osseous defects. We reviewed clinical outcomes following revision total knee replacement for failed UKR and analysed the reasons for failure and the technical aspects of the revision surgery.

Between 2003 and 2009, thirty three revisions from unicompartmental knee replacement to total knee replacement were performed in thirty two patients at a single centre. Demographics, indications for the primary and revision procedures, details of the revised prosthesis including augments and any technical difficulties or complications were noted. Patient assessment included range of motion and the functional status of the affected knee in the form of the Oxford knee score questionnaire. Statistical analysis was performed with the Student t test.

All 33 revision knees were available for prospective clinical and radiological follow-up. The minimum duration of follow-up after revision surgery was 1 year (mean 3 years, range 1 – 7 years). The median interval between the original unicompartmental knee replacements to revision surgery was 19 months (range 2 – 159 months). The predominant cause of failure was aseptic loosening (50%). Other reasons included persistent pain (21%), dislocated meniscus (18%), mal-alignment (7%) and progression of symptomatic osteoarthritis in another compartment (4%). 18 of the 33 revision procedures required additional augments. During the revision surgery, 11 knees required a long tibial stem while 1 required a long femoral stem. 10 knees required medial tibial wedge augmentation; bone graft was used in 6 knees while a metal wedge augment was used in 4 to fill significant osseous defects. At the time of follow-up, range of movement averaged 103 degrees (range 70 – 120). The mean one year Oxford knee score, was 29 compared to 39 for primary total knee replacements performed during the same period in a comparable sample group of patients at our institute (p < 0.001). Three patients continued to have pain and two required re-revision; one for infection and one for loosening.

Aseptic loosening was the commonest mode of failure. Of the UKRs revised to TKRs, 90% were revised within 5 years. The majority of revisions required additional constructs. Oxford Knee Scores after revision surgery were inferior to those for primary TKR. The role of UKR needs to be more clearly defined.