header advert
Results 1 - 20 of 23
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 23 - 23
2 Jan 2024
Dragonas C Waseem S Simpson A Leivadiotou D
Full Access

The advent of modular implants aims to minimise morbidity associated with revision of hemiarthroplasty or total shoulder arthroplasty (TSA) to reverse shoulder arthroplasty (RSR) by allowing retention of the humeral stem. This systematic review aimed to summarise outcomes following its use and reasons why modular humeral stems may be revised.

A systematic review of Pubmed, Medline and EMBASE was performed according to PRISMA guidelines of all patients undergoing revision of a modular hemiarthroplasty or TSA to RSR. Primary implants, glenoid revisions, surgical technique and opinion based reports were excluded. Collected data included demographics, outcomes and incidence of complications.

277 patients were included, with a mean age of 69.8 years (44-91) and 119 being female. Revisions were performed an average of 30 months (6-147) after the index procedure, with the most common reason for revision being cuff failure in 57 patients. 165 patients underwent modular conversion and 112 underwent stem revision. Of those that underwent humeral stem revision, 18 had the stem too proximal, in 15 the stem was loose, 10 was due to infection and 1 stem had significant retroversion. After a mean follow up of 37.6 months (12-91), the Constant score improved from a mean of 21.8 to 48.7. Stem revision was associated with a higher complication rate (OR 3.13, 95% CI 1.82-5.39).

The increased use of modular stems has reduced stem revision, however 40% of these implants still require revision due to intra-operative findings. Further large volume comparative studies between revised and maintained humeral stems post revision of modular implants can adequately inform implant innovation to further improve the stem revision rate.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 88 - 88
1 Nov 2018
Griffin MTA Simpson A Hamilton D
Full Access

The first three months following Total Knee Arthroplasty (TKA) provide an early window into a patient's functional outcomes, with the change of function in this time yielding valuable insight.

20 patients due to undergo primary TKA were recruited to the study. Data were recorded at three time points; pre-assessment clinic (PAC) before the operation, 6-weeks-post-operation (6WKs), at 12-weeks-post-operation (12WKs). Functional activity levels were monitored during early post-operative recovery for changes in early functional outcome, and allowed a comparison of metrics at each time point. This included direct functional testing of power output, timed functional performance in clinic, patient reported outcome measures, and multiday activity monitoring devices. Maximal power output symmetry (Power) was similar at 6WKs vs PAC (p = 0.37). At 12WKs, it had increased (p < 0.05). Timed functional performance (Performance) remained similar across all three time points (p = 0.27). Patient reported activities of daily living (ADL) performance significantly increased at 6WKs vs PAC (p < 0.05). At 12WKs, it remained similar (p = 0.10). Patient daily step count significantly decreased at 6WKs vs PAC (p < 0.05). By 12WKs, this had increased to similar levels to PAC (p = 0.30). Within the functional outcome measures, strong post-operative correlations were observed between Power and Performance (r = 0.62), Power and ADL (r = 0.49), and Performance and ADL (r = 0.61). Despite reduced measured step count and similar functional performance, patients report improved ADL at 6WKs. When symmetrical power output and measured step count have improved at 12WKs, patients report similar ADL to that at 6WKs. Multiple measures are required to get a full picture, however this highlights the different aspects measured by different tools.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 87 - 87
1 Apr 2017
Simpson A Dattani R Sankey R
Full Access

Background

Radiological and clinical results of total shoulder arthroplasty are dependent upon ability to accurately measure and correct glenoid version. There are a variety of imaging modalities and computer-assisted reconstruction programmes that are employed with varying degrees of success. We have compared three freely available modalities: unformatted 2D CT; formatted 2D CT; and 3D CT reconstructions.

Methods

A retrospective analysis of 20 shoulder CT scans was performed. Glenoid version was measured at the estimated mid-point of the glenoid from unformatted 2D CT scans (Scapula body method) and again following formatting of 2D CT scans in the plane of the scapula (Friedman method). 3D scapula reconstructions were also performed by downloading CT DICOM images to OSIRIX 6 and plotting ROI points on Friedman's axis to most accurately define glenoid version. Both measurements taken from 2D CT were compared to those from 3D CT. Eleven CT scans were of male patients, 9 female. Mean age was 55.2 years (Range: 23–77 years). Fourteen scans were performed for trauma, 6 for arthroplasty. Twelve scans were of the left shoulder.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 43 - 43
1 Oct 2016
Hamilton D Giesinger K Giesinger J Loth F Simpson A Howie C
Full Access

Obese patients undergoing total knee arthroplasty (TKA) face increased risks of complications such as joint infection and early revision. However, the influence of obesity on measures of patient function following TKA is poorly defined.

Knee arthroplasty outcome data for procedures carried out over an eight month period was extracted from a regional database in the UK. We analysed the impact of weight categories (BMI<30, BMI=30–34.9, and BMI≥35) on the Forgotten Joint Score – 12 (FJS-12) and Oxford Knee Score (OKS). Data was available preoperatively and 12 months postoperatively. Physical and mental health was assessed with the SF-12 one year after surgery.

Data from 256 patients were available. 49.6% had a BMI<30, 27.4% had a BMI 30–34.9 and 23.1% had a BMI≥35. Mean FJS-12 results at 1-year were 48.7 points for patients with a BMI<30, 40.7 points for patients with a BMI=30–34.9 and 34.0 points for patients with a BMI≥35. Effect sizes for change from baseline to 12-month post-op were 3.0 (Cohen's d) in patients with BMI<30 and d=2.2 in patients with BMI≥35. Mean OKS results at 1 year were 36.9 (BMI<30), 33.7 (BMI=30–34.9) and 32.0 (BMI≥35) respectively. Effect sizes for change from baseline to 12-month was d=2.1 (BMI<30) and d=1.9 (BMI≥35). Differences between BMI groups with regard to post-operative change were statistically significant for the FJS-12 (p=0.038) but not for the OKS (p=0.229).

This study highlights that outcome scores may differ in their ability to capture the impact of obesity on patient function following TKA. The FJS-12 showed significant differences in outcome based on patient obesity category, whereas the OKS did not detect between group differences.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 32 - 32
1 Oct 2016
Hamilton D Gaston P Simpson A
Full Access

Physical outcome following total knee arthroplasty is variable. Satellite cells are undifferentiated myogenic precursors considered to be muscle stem cells. We hypothesised that; the recovery of muscle strength and physical function following knee arthroplasty would be influenced by the underlying number of muscle satellite cells.

16 patients provided a distal quadriceps muscle biopsy at time of surgery. Satellite cells were identified with a primary mouse antibody for Pax7 – a cytoplasmic protein marker, and the myonuclei with DAPI. Positive cells were identified on the basis of immunofluorescent staining in association with nuclear material, and confirmed by position under the basal lamina. Patient function was assessed using a validated physical assessment protocol, the Aggregated Locomotor Function (ALF) score, muscle strength assessed using the leg extensor power-rig, and clinical outcome assessed with the Oxford Knee Score (OKS) pre-operatively and at 1 year post operatively.

Muscle satellite cell content varied amongst the patient group (Positive Staining Index 3.1 to 11.4). Satellite cell content at time of surgery correlated with change in outcomes between pre-operative and 1 year assessments in all assessed parameters (ALF, r = 0.31; muscle power, r = 49; OKS, r = 0.33). Regression analysis employing a forward stepwise selection technique employed satellite cell volume in models of pre-operative to 1 year change for all outcome parameters. Physical function (satellite cell content, patient age and pre-operative ALF score) adjusted R2 = 0.92; Muscle power (pre-operative power and satellite cell content) adjusted R2 = 0.38; Clinical outcome (pre-operative OKS and satellite cell content) adjusted R2 = 0.28.

Muscle satellite cell content influences recovery of muscle power and physical function following total knee arthroplasty. Importantly it is also associated with change in clinical scores; suggesting it to be a biomarker for patient outcomes.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 19 - 19
1 Oct 2016
Griffin M Annan J Hamilton D Simpson A
Full Access

3D imaging is commonly employed in the surgical planning and management of bony deformity. The advent of desktop 3D printing now allows rapid in-house production of specific anatomical models to facilitate surgical planning. The aim of this pilot study was to evaluate the feasibility of creating 3D printed models in a university hospital setting.

For requested cases of interest, CT DICOM images on the local NHS Picture Archive System were anonymised and transferred. Images were then segmented into 3D models of the bones, cleaned to remove artefacts, and orientated for printing with preservation of the regions of interest. The models were printed in polylactic acid (PLA), a biodegradable thermoplastic, on the CubeX Duo 3D printer.

PLA models were produced for 4 clinical cases; a complex forearm deformity as a result of malunited childhood fracture, a pelvic discontinuity with severe acetabular deficiency following explantation of an infected total hip replacement, a chronically dislocated radial head causing complex elbow deformity as a result of a severe skeletal dysplasia, and a preoperative model of a deficient proximal tibia as a result of a severe tibia fracture. The models materially influenced clinical decision making, surgical intervention planning and required equipment. In the case of forearm an articulating model was constructed allowing the site of impingement between radius and ulnar to be identified, an osteotomy was practiced on multiple models allowing elimination of the block to supination. This has not previously been described in literature. The acetabulum model allowed pre-contouring of a posterior column plate which was then sterilised and eliminated a time consuming intraoperative step.

While once specialist and expensive, in house 3D printing is now economically viable and a helpful tool in the management of complex patients.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_30 | Pages 60 - 60
1 Aug 2013
Leung A Smith I Spadaccino A Muir A Simpson A
Full Access

Bone cutting produces heat which macroscopically leads to charring and the formation of bone dust. As part of a project to design a novel bone cutting device, we studied the extent of histological thermal damage from bone cutting with different cutting blades.

Three blades were used: a bone hacksaw made in the nineteenth century which was used for amputation, a sagittal saw blade made by Ortho Solutions, and a sagittal saw blade made by Stryker. Sheep femurs were harvested from recently euthanised animals and cuts were made with these three devices, producing ring-shaped bone specimens. Specimens were immediately stored in formaldehyde, decalcified, and stained with hematoxylin and eosin. The edge of the specimens was then photographed microscopically, and the images examined with the computer programme Axiovision (Carl Zeiss AG, Oberkochen, Germany). Visual examination allowed identification of live and dead osteocytes, and also to measure their depth from the surface.

A minimal of 7 images was obtained per blade. The hacksaw specimens had the highest percentage of live osteocytes (n=214, 59.8%), and with the shortest average depth where live osteocytes were located (169μm, SD 78.15). In comparison, the percentage of live osteocytes for the Ortho Solutions (n=156, 17.4%) and Stryker (n=168, 29.5%) blades were much lower. The difference in average depths where live osteocytes were located was statistically significant between the three groups (p < 0.001). The average depths of dead osteocytes were shallowest for the Stryker (115μm, SD 67.56) and hacksaw (118.28 μm, SD 75.16) groups with no statistical difference between them.

In conclusion the hacksaw appeared to produce the least thermal damage histologically during cutting. The results reflect a relationship between certain features in cutting blade designs and the extent of thermal damage. Future experiments to directly measure heat produced during cutting are planned.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 56 - 56
1 Mar 2013
Leung A Smith I Spadaccino A Muir A Simpson A
Full Access

Bone cutting produces heat which macroscopically leads to charring and the formation of bone dust. As part of a project to design a novel bone-cutting device, we studied the extent of histological thermal damage from different cutting blades. Three blades were used: a nineteenth century bone hacksaw, and modern sagittal saw blades manufactured by Ortho Solutions and Stryker. Sheep femurs were harvested from recently euthanised animals and cuts were made with these blades. Specimens were immediately stored in formaldehyde, decalcified, and stained with hematoxylin and eosin. The edge of the specimens was then photographed microscopically, and the images examined with Axiovision software (Carl Zeiss AG, Oberkochen, Germany). Visual examination allowed identification of live and dead osteocytes, and also to measure their depth from the surface. A minimal of 7 images was obtained per blade. The hacksaw specimens had the highest percentage of live osteocytes (n=214, 59.8%), and the shortest average depth where live osteocytes were located (169 μm, SD 78.15). In comparison, the percentage of live osteocytes for the Ortho Solutions (n=156, 17.4%) and Stryker (n=168, 29.5%) blades were much lower. The difference in average depths where live osteocytes were located was statistically significant between the three groups (p<0.001). In conclusion the hacksaw appeared to produce the least thermal damage histologically during cutting. The results reflect a relationship between certain features in cutting blade designs and the extent of thermal damage. Future experiments to monitor heat produced during cutting are planned.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 5 - 5
1 Mar 2013
Wallace R Simpson A
Full Access

Aim

To investigate the effects of strain rate and mineral level on the stress at failure, stiffness and toughness of whole bones.

Methods

40 ovine femurs were harvested and subjected to either slow [8.56 × 10−3 s−1 (± 1.42 × 10−3 SD)] or dynamic [17.14 s−1 (± 8.20 SD)] loading. Half the bones were demineralised by 20% compared to the original mineral content. These were allocated evenly between the high and low strain rate groups. Dynamic loading was achieved by custom designed comminution device. Slow rate testing was carried out on a Zwick/Roell z005 testing machine.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 37 - 37
1 Mar 2013
Smith I Milto K Doherty C Amyes S Simpson A Hall A
Full Access

Staphylococcus aureus is a highly virulent pathogen and implicated in approximately 50% of cases of septic arthritis. Studies investigating other S. aureus-related infections suggest that alpha-(Hla), beta-(Hlb) and gamma-(Hlg) toxins are key virulence factors, with the ‘pore-forming’ alpha-toxin considered the most potent. Here, we have assessed the influence of alpha-toxin alone on in situ chondrocyte viability. Osteochondral explants were harvested from the metacarpophalangeal joints of 3-year-old cows and cultured in Dulbecco's Modified Eagle's Medium. The flasks were then inoculated with isogenic ‘knockout’ strains of S. aureus: DU5946 (Hla+Hlb-Hlg-: alpha-toxin only strain) or DU1090 (Hla-Hlb+Hlg+: beta- and gamma-toxin only strain). Explants were incubated (37°C) and stained after 18, 24 and 40hrs with chloromethylfluorescein-di-acetate and propidium iodide, labelling living chondrocytes green and dead cells red, respectively. Axial sections were imaged by confocal microscopy and the percentage cell death determined. Alpha-toxin-producing S. aureus caused 24.8+/−3.7% chondrocyte death at 18hrs and 44.6+/−7.2% death at 24hrs. At 40hrs, there was significantly more chondrocyte death (87.4+/−3.6%;p<0.001) compared to the alpha-toxin knockout strain, which was negligible (4.1+/−1.7%; means+/−SEM; N=4 independent experiments). In this in vitro bovine cartilage explant model, whereby the effects of defined toxins were determined in isolation of a complex host immune response, in situ chondrocyte viability was dramatically and exclusively reduced by alpha-toxin. This work forms the basis for developing a rational treatment to reduce the extent of cartilage destruction during an episode of septic arthritis. IDMS was supported by Orthopaedic Research UK and The Royal College of Surgeons of Edinburgh.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 28 - 28
1 Mar 2013
Smith I Winstanley J Doherty C Amyes S Simpson A Hall A
Full Access

We have demonstrated that toxins produced by Staphylococcus aureus, a common infective agent in septic arthritis (SA), cause rapid in situ chondrocyte death. Here, we have compared the sensitivity of chondrocytes within the superficial and deep zones (SZ, DZ) of cartilage to the same toxins. Culture medium containing the toxins produced by S. aureus strain 8325-4, which include alpha-, beta-, and gamma-toxin, was prepared. Cartilage explants free of subchondral bone were taken from the metacarpophalangeal joints of 3-year-old cows, and incubated (37°C) with the toxins. Explants were stained after 6hrs with chloromethylfluorescein-di-acetate and propidium iodide, labelling living chondrocytes green and dead cells red, respectively. Full-thickness coronal sections were imaged by confocal microscopy and the percentage cell death within the SZ (100μm from articular surface) and DZ (100μm from subchondral bone interface) determined. Both zones were incubated with the same toxin culture medium for the same time period. At 0hrs, chondrocytes within all zones were >98% viable. However, after incubation with toxin-containing culture medium for 6hrs, 71.9+/−11.2% of the SZ cells were dead compared to only 47.4+/−6.7% in the DZ (p=0.03;data are means+/−SEM;N=4). These results suggest that SZ chondrocytes are considerably more sensitive to S. aureus toxins than those within deeper zones. As SZ chondrocytes are close to the synovial fluid harbouring bacterial toxins, these data emphasise the need to remove bacteria and their products aggressively as part of the treatment of SA. IDMS was supported by Orthopaedic Research UK and The Royal College of Surgeons of Edinburgh.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 67 - 67
1 Mar 2013
Pearson R Simpson A Scammell B
Full Access

The type, duration and intensity of exercise required to induce mechanical hypoalgesia is poorly defined. We are interested in identifying the exercise parameters required to induce raised pressure pain thresholds. This pilot study investigates the effect of indoor rowing on pressure pain threshold (PPT) in high performance rowers. Our ultimate aim is to investigate the potential of utilising exercise in the treatment of chronic pain and specifically in relation to the management of knee osteoarthritis. 20 high performance rowers (13M:7F; Mean Age 20.8 years; SD 1.74) were recruited from the University of Nottingham and Nottingham Boat Club high performance rowing teams under a research protocol approved by the University of Nottingham Ethics Committee. PPT measurements were made in triplicate using an algometer (SOMEDIC, Sweden) at the medial knee joint line, anterior tibia and sternum, pre- and post-exercise. Anthropomorphic and rowing ergometer power output data were also recorded. There was significant increase in PPT values at all sites following exercise (Medial joint line: 127.6Nm-2, 26%, p=0.001; Tibia: 110.8Nm-2, 24.7%, p<0.001; Sternum: 48.9Nm-2, 11.7%, p=0.005 – Wilcoxon Signed Rank) statistical power was 97.1%, 100% and 88.1%, respectively. PPT was greater at baseline at the medial joint line compared to other sites, reaching highly significant relative to the sternum (p<0.001). We determined that ten minutes of high intensity indoor rowing induced hypoalgesia in high performance rowers. Further research is required to investigate the detailed interplay between exercise and hypoalgesia, including its duration post exercise, to identify suitability for use in pain management strategies.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 16 - 16
1 Mar 2013
Tawonsawatruk T Spadaccino A Wallace R Simpson A
Full Access

Introduction

Bending tests are commonly used to evaluate the mechanical behaviour of small animal bones. To test whole bones, it is normal that soft tissue should be removed before testing. However, cleaning the specimens might disturb the callus, interfering with the mechanical properties. This study compares mechanical properties of rat tibia between specimen with and without muscle cleaning

Materials and methods

12 male Wistar rats aged 3–4 months were used. Soft tissues including skin and muscle were removed from right tibias (Group A), whereas muscles on the left tibia were left intact (Group B). 4-point bending was used to find the ultimate load, stress and Young's modulus.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 8 - 8
1 Mar 2013
Hamilton D Gaston P Simpson A
Full Access

INTRODUCTION

This study investigates the relationship between direct measurement of outcome and patient report of that outcome via the OKS. The stability of this relationship over time following surgery is also assessed.

METHODS

183 TKA patients were assessed pre-operatively and at 6, 26 and 52 weeks post-op. Oxford Knee Score was obtained along with measures of pain intensity, knee flexion, lower limb power and timed functional assessment. Correlation of performance variables with the OKS was assessed, and regression analysis performed on those that formed significant associations. Significance was accepted at p = 0.05.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 75 - 75
1 Aug 2012
Smith I Milto K Amyes S Simpson A Hall A
Full Access

Staphylococcus aureus is the most common bacterial isolate in septic arthritis. From studies on isolated cartilage cells, the ‘pore-forming’ alpha and gamma toxins are considered the most virulent factors. However, understanding the response of in situ chondrocytes is important in order to identify new treatments to reduce the extent of cartilage damage during, and following, episodes of septic arthritis. Animal models can give useful information; however the interpretation of data can be complex because of the strong immune response. Thus, to clarify the role of S. aureus toxins on in situ chondrocytes we have developed a bovine cartilage explant model.

Metacarpophalangeal joints, from 3-year-old cows, were opened under sterile conditions within 6hrs of slaughter and cartilage explants harvested. Explants were placed into flasks containing Dulbecco's Modified Eagle Medium (DMEM). Aspirates from a patient with septic arthritis of the hip, containing S. aureus, were compared to negative aspirates (no bacterial growth) from a patient with an inflamed knee joint (controls).

The explants were incubated at 37 degrees Celsius and stained after 18, 24 and 40hrs with the fluorescent probes chloromethylfluorescein di-acetate and propidium iodide (10 micromolar each) to label living chondrocytes green and dead cells red respectively. Following imaging of cartilage by confocal laser scanning microscopy, the percentage cell death at each time point was obtained using Volocity 4 software.

There was no detectable change in chondrocyte viability (<1% cell death) over 40hrs incubation with the negative aspirate. However, for the aspirate from a patient positive for S. aureus, there was a rapid increase in cell death between 18 and 24hrs (0.2 +/− 0.3% to 23 +/− 5% cell death respectively) and almost complete cell death at 40hrs (80 +/− 12%; data are means +/− s.d; n=4).

These results show that a strain of S. aureus capable of manifesting clinical disease exerts a potent effect on in situ chondrocytes. In the absence of an immune response, chondrocyte death was purely the result of the bacteria and their products. This bovine cartilage explant model could therefore be useful for studying the effects of S. aureus on chondrocyte behaviour and, ultimately, cartilage integrity.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 108 - 108
1 Aug 2012
Wallace R Simpson A
Full Access

There is an established link between bone quality and fracture risk. It has been suggested that reduced bone quality will also reduce the toughening mechanisms displayed during loading at a high strain rate. We hypothesised that partially decalcified bone will not demonstrate an increase in force required to cause failure when comparing low and high strain rate loading.

Mechanical properties were defined by the maximum force at failure. Bone quality was defined by the mineral content. This was altered by subjecting the bones to ultrasonically assisted decalcification in 10M EDTA to achieve an average 18% mineral reduction (A 70 yr old woman has approx 18% of her peak bone mass). 20 pairs of sheep femurs were harvested and split into four equal groups: normal bone quality, fast strain rate (NF); normal bone quality, slow strain rate (NS); low bone quality, fast strain rate (LF) and low bone quality, slow strain rate (LS). All mechanical testing was carried out by means of 3-point bending. Load representing the slow strain rate was applied by a mechanical testing machine (Zwick) at a rate resulting in a deflection of 1mm/s. The dynamic loading was applied by a custom designed pneumatic ram at a mean rate of deflection between the specimens of 2983 mm/s (±SD 1155), this equates to strain rates experienced in a road traffic accident.

The following results for force at failure were found (mean ± SD). NF: Force 5503N (± 1012); NS: Force 3969N (± 572); LF: Force 3485N (± 772); LS: Force 3165N (± 605). Groups were compared using a Mann-Whitney U test. Significant results were found between the following groups: Normal bone quality, strain rate compared (NF-NS) p<0.002; Fast strain rate, bone quality compared (NF-LF) p=0.008; Slow strain rate, bone quality compared (NS-LS) p=0.02. No statistical significance was found when comparing low bone quality, strain rate compared (LF-LS) p=0.47.

These results show that normal healthy bone has an ability to withstand higher strain rates which protects it against fracture. This ability to withstand high strain rates is lost in decalcified bone making it more susceptible to fracture. The results of this study indicate the importance of strain rate reduction as well as energy absorption in the design of hip protectors and in environmental modifications.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 67 - 67
1 Aug 2012
Hamilton D Gaston P Simpson A
Full Access

End-stage osteoarthritis is characterised by pain and reduced physical function, for which total knee arthroplasty (TKA) is recognised to be a highly effective treatment. Most implants are multi radius in design, though modern kinematic theory suggests a single flexion/extension axis is located in the femur. A recently launched TKA implant (Triathlon, Stryker US), is based on this theory, adopting a single radius of curvature femoral component. It is hypothesised that this design allows better function, and specifically, that it results in enhanced efficiency of the quadriceps group through a longer patello-femoral moment arm.

Change in power output was compared between single and multi radius implants as part of a larger ongoing randomised controlled trial to benchmark the new implant. Power output was assessed using a Leg Extensor Power Rig, well validated for use with this population, pre-operatively and at 6, 26 and 52 weeks post-operatively in 101 Triathlon and 82 Kinemax implants. All patients were diagnosed with osteoarthritis, and drawn from a single centre. Output was reported as maximal wattage (W) generated in a single leg extension, and expressed as a proportion of the contralateral limb power output to act as an internal control.

The results are shown in the table below. Two-way repeated measures ANOVA demonstrated a significant effect of TKA on the quadriceps power output, F = 249.09, p = <0.001 and also a significant interaction of the implant group on the output F = 11.33, p = 0.001. Independent samples t-tests of between group differences at the four assessment periods highlighted greater improvement in the single radius TKA group at all post-operative assessments (p <0.03), see table.

The theoretical enhanced quadriceps efficiency conferred by single radius design was found in this study. Power output was significantly greater at all post-operative assessments in the single radius compared to the multi radius group. This difference was particularly relevant at early 6 week and 1 year assessment. Lower limb power output is known to link positively to functional ability. The results support the hypothesis that TKAs with a single radius design have enhanced recovery and better function.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVIII | Pages 22 - 22
1 Jun 2012
Leung A Hawthorn B Simpson A
Full Access

The treatment of chronic osteomyelitis requires both appropriate surgical and antibiotic management. Prolonged intravenous antibiotic therapy followed by oral therapy is widely adopted. Despite this, the long-term recurrence rate is around 20% to 30%.

The aim of this cohort study was to examine the effectiveness of surgical marginal resection in combination with local application of antibiotics (Collatamp G - gentamicin in a collagen fleece). Post-operatively this was followed by a short course of intravenous antibiotics, then oral antibiotics, to 6 weeks in total.

A cohort of 50 patients from a 10-year period, 2000 to 2010, with chronic osteomyelitis was identified. Most were male (n= 35, 70%) and the average age is 40.9 years (SD 15.9). The mean follow-up duration was 3.2 years (SD 1.8). The average length of admission was 9.8 days (SD 11.4). 6 patients (12%) suffered recurrence of infection requiring further treatment. We used the Cierny and Mader classification to further stratify the patients. ‘A’ hosts had a shorter duration of admission (7.1 days) than ‘B’ hosts (12.3 days). There was no significant difference between recurrence rates of ‘A’ and ‘B’ hosts. Where available, we found pre-operative C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) levels had no correlation with disease recurrence. Disease-free probability for this cohort compared favourably with a cohort treated with prolonged systemic and oral antibiotics (Simpson and colleagues, JBJS Br 2001).

We believe local administration of gentamicin in a collagen fleece is a useful component in the management of chronic osteomyelitis.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 22 - 22
1 May 2012
Hamilton D Gaston P Simpson A
Full Access

Introduction

Recovery of muscle strength following Total Knee Replacement (TKR) is variable, and can affect the resultant function of the patient. Satellite cells are undifferentiated myogenic precursors considered to be muscle stem cells that lie quiescently around the muscle fibre. These cells repair damaged fibres and have the potential to generate new muscle fibres. Therefore, theoretically, they could be associated with the variation in muscle recovery following surgery. We hypothesised that the recovery of muscle strength following knee replacement in a given patient would be influenced by the underlying number of satellite cells in that patient.

Methods

20 patients undergoing TKR were recruited from the waiting list of a single consultant. A muscle biopsy was taken at the time of surgery from the distal quadriceps. This was fixed in paraffin wax, and sections obtained. Satellite cells were identified with a primary mouse antibody for Pax7 - a cytoplasmic protein marker - and an immunofluorescent goat anti-mouse secondary. Slides were counterstained with DAPI to stain the myonuclei. The positive staining index (PSI) was calculated (number of satellite cells/total number of myonuclei x 100). Recovery of muscle (quadriceps) strength was assessed using the leg extensor power-rig (LegRig) pre-operatively, at 6 and 26 weeks post-operatively. Statistical analysis was performed using the Minitab version 15 software, the level of significance was set as p = 0.05.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 87 - 87
1 May 2012
Donaldson F Pankaj P Simpson A
Full Access

A significant source of failure for external fixation devices is loosening of the fixation implant. As bone competence drops with ageing or disease such as osteoporosis, the risk of loosening is likely to increase. However it is not clear how fixator configuration should be adapted to minimise loosening in weaker bone. The aim of this study was to assess the effect of bone competence on the yielding of bone tissue surrounding fixation implants, and thereby inform the selection of fixator configuration to minimise loosening. External fixation of the tibial midshaft using half-pins and Illizarov wires was modelled using finite-element analysis. Half-pin configurations of two and three stainless steel and titanium pins pins were assessed. Illizarov wire configurations of two and four wires were studied, over a range of wire tensions. Bone competence was varied by changing the cortical thickness and elastic properties of the bone fragments to approximate: a) young, high-density bone, b) middle-aged, mid-porosity bone and c) old-aged, severely porous bone. Bone elastic properties were taken from a recent study of cortical bone conducted by the authors. The interaction between implants and bone was modelled with contact analysis, enabling realistic separation. Implant loosening was included using a bone-specific, strain-based yield criterion. Regions where bone tissue yielded were identified as likely sites of loosening. In all cases loading was applied to simulate a one-legged stance.

Half-pin fixation

Increasing the number of half-pins from two to three produced an approximate 80% reduction of yielded bone volume in all age groups. The volume of yielded bone increased with ageing, approximately three times greater in old-aged bone than in young bone. In the young and middle-aged cases yielded bone never penetrated the full cortex. Contrastingly, the full cortex was yielded in the old-aged bone fragments for both two- and three-pin fixation. In all cases the volume of yielded bone was greater at the pin(s) nearest to the fracture gap. The use of titanium pins increased the volume of yielded bone around half-pins by approximately 1.7 times. These results suggest bone competence, number of half-pins, location of half-pins and half-pin material all significantly influence implant loosening.

Illizarov wire fixation

Increasing the number of Illizarov wires reduced the volume of yielded bone by approximately 60% in all age groups. The volume of yielded bone increased with ageing by a factor of approximately 2.0 times from young to old bone. Bone yielding never progressed through the entire cortex; it reached a maximum of 70% of the cortical thickness in two-wire fixation of the old-aged bone fragment. This is a possible reason for the lower rate of loosening in Illizarov wire fixation as compared to half-pin fixation. Increasing wire tension reduced the volume of yielded bone. These results suggest that bone competence, number of wires, wire tension and wire arrangement significantly influence loosening.