header advert
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 13 - 13
1 Oct 2014
Wallace D Gregori A Picard F Bellemans J Lonner J Marquez R Smith J Simone A Jaramaz B
Full Access

Unicondylar knee arthroplasty (UKA) is growing in popularity with an increase in utilisation. As a less invasive, bone preserving procedure suitable for knee osteoarthritic patients with intact cruciate ligaments and disease confined to one compartment of the knee joint. The long term survival of a UKA is dependent on many factors, including the accuracy of prosthesis implantation and soft tissue balance. Robotic assisted procedures are generally technically demanding, can increase the operation time and are associated with a learning curve. The learning curve for new technology is likely to be influenced by previous experience with similar technologies, the frequency of use and general experience performing the particular procedure. The purpose of this study was to determine the time to achievement of a steady state with regards to surgical time amongst surgeons using a novel hand held robotic device.

This study examined consecutive UKA cases which used a robotic assistive device from five surgeons. The surgeons had each performed at least 15 surgeries each. Two of the surgeons had previous experience with another robotic assistive device for UKA. All of the surgeons had experience with conventional UKA. All of the surgeons have used navigation for other knee procedures within their hospital. The system uses image free navigation with infrared optical tracking with real time feedback. The handheld robotic assistive system for UKA is designed to enable precision of robotics in the hands of the surgeon. The number of surgeries required to reach ‘steady state’ surgical time was calculated as the point in which two consecutive cases were completed within the 95% confidence interval of the surgeon's ‘steady state’ time.

The average surgical time (tracker placement to implant trial acceptance phase) from all surgeons across their first 15 cases was 56.8 minutes (surgical time range: 27–102 minutes). The average improvement was 46 minutes from slowest to quickest surgical times. The ‘cutting’ phase was reported as decreasing on average by 31 minutes. This clearly indicates the presence of a learning curve. The surgeons recorded a significant decrease in their surgical time where the most improvement was in the process of bone cutting (as opposed to landmark registration, condyle mapping and other preliminary or planning steps). There was a trend towards decreasing surgical time as case numbers increase for the group of five surgeons. On average it took 8 procedures (range 5–11) to reach a steady state surgical time. The average steady state surgical time was 50 minutes (range 37–55 minutes).

In conclusion, the average operative time was comparable with clinical cases reported using other robotic assistive devices for UKA. All five surgeons using the novel handheld robotic-assisted orthopaedic system for UKA reported significant improvement in bone preparation and overall operative times within the first 15 cases performed, reaching a steady state in surgical times after a mean of 8 cases. Therefore, this novel handheld device has a similar learning curve to other devices on the market.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 25 - 25
1 Oct 2014
Picard F Gregori A Bellemans J Lonner J Smith J Gonzales D Simone A Jaramaz B
Full Access

For patients suffering from osteoarthritis confined to one compartment of the knee joint, a successful unicondylar knee arthroplasty (UKA) has demonstrated an ability to provide pain relief and restore function while preserving bone and cruciate ligaments that a total knee arthroplasty (TKA) would sacrifice. Long-term survival of UKA has traditionally been inconsistent, leading to decreased utilisation in favour of alternative surgical treatment. Robot-assisted UKA has demonstrated an ability to provide more consistent implantation of UKA prosthesis, with the potential to increase long-term survivorship.

This study reports on 65 patients undergoing UKA using an image-free, handheld robotic assistive navigation system. The condylar surface was mapped by the surgeon intra-operatively using a probe to capture a 3-dimensional representation of the area of the knee joint to be replaced. The intra operative planning phase allows the surgeon to determine the size and orientation of the femoral and tibial implant to suit the patients’ anatomy. The plan sets the boundaries of the bone to be removed by the robotic hand piece. The system dynamically adjusts the depth of bone being cut by the bur to achieve the desired result. The planned mechanical axis alignment was compared with the system's post-surgical alignment and to post-operative mechanical axis alignment using long leg, double stance, weight bearing radiographs.

All 65 knees had knee osteoarthritis confined to the medial compartment and UKA procedures were completed using the handheld robotic assistive navigation system. The average age and BMI of the patient group was 63 years (range 45–82 years) and 29 kg/m2 (range 21–37 kg/m2) respectively. The average pre-operative deformity was 4.5° (SD 2.9°, Range 0–12° varus). The average post-operative mechanical axis deformity was corrected to 2.1° (range 0–7° varus). The post-operative mechanical axis alignment in the coronal plane measured by the system was within 1° of intra-operative plan in 91% of the cases. 3 out of 6 of the cases where the post-operative alignment was greater than 1° resulted due to an increase in the thickness of the tibia prosthesis implanted. The average difference between the ‘planned’ mechanical axis alignment and the post-operative long leg, weight bearing mechanical axis alignment was 1.8°. The average Oxford Knee Score (old version) pre and post operation was 38 and 24 respectively, showing a clinical and functional improvement in the patient group at 6 weeks post-surgery.

The surgical system allowed the surgeons to precisely plan a UKA and then accurately execute their intra operative plan using a hand held robotically assisted tool. It is accepted that navigation and robotic systems have a system error of about 1° and 1mm. Therefore, this novel device recorded accurate post-operative alignment compared to the ‘planned’ post-operative alignment. The patients in this group have shown clinical and functional improvement in the short term follow up. The importance of precision of component alignments while balancing existing soft-tissue structures in UKA has been documented. Utilisation of robotic-assisted devices may improve the accuracy and long-term survivorship UKA procedure.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 73 - 73
1 Aug 2013
Jaramaz A Nikou C Simone A
Full Access

NavioPFS™ is a hand-held robotic technology for bone shaping that employs computer control of a high-speed bone drill. There are two control modes – one based on control of exposure of the cutting bur and another based on the control of the speed of the cutting bur. The unicondylar knee replacement (UKR) application uses the image-free approach in which a mix of direct and kinematic referencing is used to define all parameters relevant for planning. After the bone cutting plan is generated, the user freely moves the NavioPFS handpiece over the bone surface, and carves out the parts of the bone targeted for removal. The real-time control loop controls the depth or speed of cut, thus resulting in the planned bone preparation. This experiment evaluates the accuracy of bone preparation and implant placement on cadaveric knees in a simulated clinical setting.

Three operators performed medial UKR on two cadaver specimens (4 knees) using a proprietary implant design that takes advantage of the NavioPFS approach. In order to measure the placement of components, each component included a set of 8 conical divots in predetermined locations. To establish a shared reference frame, a set of four fiducial screws is inserted in each bone. All bones were cut using a 5 mm spherical bur. Exposure Control was the primary mode of operation for both condylar cuts – although the users utilised Speed Control to perform some of the more posterior burring activities and to prepare the peg holes. Postoperatively, positions of conical divots on the femoral and tibial implants and on the respective four fiducial screws were measured using a Microscribe digitising arm in order to compare the final and the planned implant position.

All implants were placed within 1.5 mm of target position in any particular direction. Maximum translation error was 1.31 mm. Maximum rotational error was 1.90 degrees on a femoral and 3.26 degrees on a tibial component. RMS error over all components was 0.69mm/1.23 degrees.

This is the first report of the performance of the NavioPFS system under clinical conditions. Although preliminary, the results are overall in accordance with previous sawbones studies and with the reports from comparable semi-active robotic systems that use real time control loop to control the cutting performance.

The use of NavioPFS in UKR eliminates the need for conventional instrumentation and allows access to the bone through a reduced incision. By leveraging the surgeon's skill in manipulating soft tissues and actively optimising the tool's access to the bone, combined with the precision and reproducibility of the robotic control of bone cutting, we expect to make UKR surgery available to a wider patient population with isolated medial osteoarthritis that might otherwise receive a total knee replacement. In addition to accurate bone shaping with a handheld robotically controlled tool, NavioPFS system for UKR incorporates a CT-free planning system. This approach combines the practical advantages of not requiring pre-operative medical images, while still accurately gathering all key information, both geometric and kinematic, necessary for UKR planning.