header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 51 - 51
1 Oct 2018
Simon JC Della Valle CJ Wimmer MA Jacobs JJ
Full Access

Introduction

This study explores whether subjects with bicruciate retaining TKRs (BiCR) have more normal knee biomechanics during level walking and stair ascent than subjects with posterior cruciate retaining TKRs (PCR). Due to anterior cruciate ligament (ACL) preservation, we expect BiCR subjects will not show the reduced flexion and altered muscle activation patterns characteristic of persons with TKRs.

Methods

Motion and electromyography (EMG) data were collected during level walking and stair climbing for 16 BiCR subjects (4/12 m/f, 65±3 years, 30.7±7.0 BMI, 8/8 R/L), 17 PCR subjects (2/15 m/f, 65±7 years, 30.4±5.1 BMI, 7/10 R/L), and 17 elderly healthy control subjects (8/9 m/f, 55±10 years, 25.8±4.0 BMI, 10/7 R/L), using the point cluster marker set. Surface EMG electrodes were placed on the vastus medialis obliquus (VMO), rectus femoris (RF), biceps femoris (BF), and semitendinosus (ST) muscles. EMG data are reported as percent relative voluntary contraction (%RVC), normalized to the average peak EMG signals during level walking. Statistical nonparametric mapping was used for waveform analysis.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 31 - 31
1 Apr 2018
Simon JC Della Valle CJ Wimmer MA
Full Access

Introduction

Bicruciate-retaining (BiCR) total knee replacements (TKRs) were designed to improve implant performance; however, functional advantages during daily activity have yet to be demonstrated. Although level walking is a common way to analyze functionality, it has been shown to be a weak test for identifying gait abnormalities related to ACL pathologies. The goal of this study is to set up a functional motion analysis test that will examine the effects of the ACL in TKR patients by comparing knee kinematics, kinetics, and muscle activation patterns during level and downhill walking for patients with posterior-cruciate retaining (PCR) and BiCR TKRs.

Methods

Motion and electromyography (EMG) data were collected simultaneously for 12 subjects (4/8 m/f, 64±11 years, 31.3±7.3 BMI, 6/6 right/left) with BiCR TKRs and 15 subjects (6/9 m/f, 67±7 years, 30.5±5.1 BMI, 4/11 right/left) with PCR TKRs during level and downhill walking using the point cluster marker set. Surface electrodes were placed on the vastus medialis obliquus (VMO), rectus femoris (RF), biceps femoris (BF), and semitendinosus (ST) muscles. EMG data are reported as percent relative voluntary contraction (%RVC), normalizing the signal during downhill walking to the mean maximum EMG value during level walking.