header advert
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 64 - 64
1 Feb 2020
Hopwood J Redmond A Chapman G Richards L Collins S Brockett C
Full Access

Background

Total ankle arthroplasty (TAA) is an alternative to ankle arthrodesis, replacing the degenerated joint with a mechanical motion-preserving alternative. Implant loosening remains a primary cause of TAA revision, and has been associated with wear-mediated osteolysis. Differing implant designs have a major influence on the wear performance of joint replacements. Providing a range of implant sizes allows surgeons a greater intra-operative choice for varying patient anatomy and potential to minimise wear. Minimal pre-clinical testing exists in the literature that investigates the effect of implant size on the wear behaviour. The aim of this study therefore was to investigate the effect of two different implant sizes on the wear performance of a TAA.

Materials & Methods

Six ‘medium’ and six ‘extra small’ BOX® (MatOrtho Ltd, UK) TAA implants, of the same conceptual design and polyethylene insert thickness, were tested in a modified 6 station pneumatic knee simulator. 5 million cycles (Mc) of wear simulation were completed for each implant size, under kinematics aiming to replicate an ankle gait cycle (Figure 1) [1]. The simulator used had six degrees of freedom, of which four were controlled. The maximum axial load was 3150N, equivalent to 4.5 times body weight of a 70kg individual. The flexion profile ranged from −15° plantarflexion to 15° dorsiflexion. Rotation about the tibial component ranged from −2.3° of internal rotation to 8° external rotation, and anterior/posterior (AP) displacement ranged from 3.1 mm anterior to −0.9 mm posterior displacement. The lubricant used was 25% bovine serum supplemented with 0.04% sodium azide to prevent bacterial degradation. The wear of the TAA polyethylene inserts were determined gravimetrically after each Mc, with unloaded soak controls used to compensate for the uptake of moisture by the polyethylene.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 30 - 30
1 Apr 2019
De Pieri E Lunn D Rasmussen K Redmond A Ferguson SJ
Full Access

Introduction

Preclinical testing of implants considers THR patients a homogenous group; in reality, patients are heterogeneous and previous large cohort studies have explored stratification and identified that THR patients function differently [1]. The wide- spread failure of the ASR hip highlighted the potential importance of patient characteristics [2], and a more robust pre- clinical testing procedure may have improved prediction of outcome. Therefore this study aimed to identify differences in hip contact force (HCF) in THR patients stratified by their functional ability.

Methods

133 THR patients, >12 months post-surgery, underwent 3D kinematic (Vicon, UK) and kinetic (AMTI, USA) analysis whilst walking at self-selected speed. HCF's, normalized by body weight, were computed through multibody modeling (AnyBody Technology, Denmark) during gait and a mean for each patient was calculated from three to five walking trials. Patients were stratified into three functionality groups by distribution around the mean gait speed for the full cohort of 1.1m/s. The low functioning group (LF) comprised cases with a gait speed ≤0.93 m/s (i.e. 1.1m/s ≤1SD), the mid functioning group (MF) comprised cases with a gait speed between 0.94 m/s and 1.25 m/s (cohort mean ± 1SD), while the high functioning group (HF) included cases walking ≥1.26 m/s. Differences between groups were analyzed using one- dimensional statistical parametric mapping [3]. Linear regression was used to test for significant differences across groups. The test statistic SPM{t} was evaluated at each point in the normalized time series, and a critical threshold corresponding to an error rate of α= 0.05 was calculated based on random field theory. Supra-threshold clusters with their associated p-values were then identified.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 75 - 75
1 Apr 2019
Lunn D Chapman G Redmond A
Full Access

Introduction

Total hip replacement (THR) patients are often considered a homogenous group whereas in reality, patients are heterogeneous. Variation in revision rates between patient groups suggest that implants are exposed to different environmental conditions in different patients [1]. Previous reports suggest that for every unit increase of BMI, there is a 2% increased risk of revision of a THR [2]. The aim of this study was to better understand the effect of patient-specific characteristics such as BMI on hip motions and to explore the possible impact on wear.

Methods

137 THR patients, at least 12 months post-surgery, underwent 3D kinematic (Vicon, Oxford, UK) and kinetic (AMTI, USA) analysis whilst walking at self-selected walking speed. 3D kinematic data were then mapped onto a modelled femoral cup at 20 pre-determined points to create pathways for femoral head contact, which were then quantified by deriving the aspect ratio (AR). Patients were stratified into three groups determined by BMI scores; healthy weight (BMI ≤25 kg/m2) (n=34); overweight (BMI >25kg/m2 to ≤ 30 kg/m2) (n=66) and obese patients (BMI > 30 kg/m2) (n=37). Comparisons were made using 95% confidence intervals (CI) and one way ANOVAs.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 76 - 76
1 Apr 2019
Vasiljeva K Al-Hajjar M Lunn D Chapman G Redmond A Flatters I Thompson J Jones A
Full Access

Introduction

One of the known mechanisms which could contribute to the failure of total hip replacements (THR) is edge contact. Failures associated with edge contact include rim damage and lysis due to altered loading and torques. Recent study on four THR patients showed that the inclusion of pelvic motions in a contact model increased the risk of edge contact in some patients. The aim of current study was to determine whether pelvic motions have the same effect on contact location for a larger patient cohort and determine the contribution of each of the pelvic rotations to this effect.

Methods

Gait data was acquired from five male and five female unilateral THR patients using a ten camera Vicon system (Oxford Metrics, UK) interfaced with twin force plates (AMTI) and using a CAST marker set. All patients had good surgical outcomes, confirmed by patient-reported outcomes and were considered well-functioning, based on elective walking speed. Joint contact forces and pelvic motions were obtained from the AnyBody modelling system (AnyBody Technologies, DK). Only gait cycle regions with available force plate data were considered. A finite element model of a 32mm head on a featureless hemispherical polyethylene cup, 0.5mm radial clearance, was used to obtain the contact area from the contact force. A bespoke computational tool was used to analyse patients' gait profiles with and without pelvic motions. The risk of edge contact was measured as a “centre proximity angle” between the cup pole and centre of the contact area, and “edge proximity angle” between the cup pole and the furthest contact area point away from the pole. Pelvic tilt, drop and internal-external rotation were considered one at a time and in combinations.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 18 - 18
1 Mar 2017
Stratton-Powell A Tipper J Williams S Redmond A Brockett C
Full Access

Introduction

Total ankle replacement (TAR) is less successful than other joint replacements with a 77% survivorship at 10 years. Predominant indications for revision include: Insert dislocation, soft tissue impingement and pain/stiffness. Insert edge-loading may be both a product and cause of these indications and was reported to affect 22% of patients with the, now withdrawn from market, Ankle Evolutive System (AES) TAR (Transysteme, Nimes, France). Compressive forces up to seven times body weight over a relatively small contact area (∼6.0 to 9.2 cm2), in combination with multi-directional motion potentially causes significant polyethylene wear and deformation in mobile-bearing TAR designs. Direct methods of measuring component volume (e.g. pycnometer) use Archimedes' principle but cannot identify spatial changes in volume or form indicative of wear/deformation. Quantitative methods for surface analysis bridge this limitation and may advance methods for analysing the edge loading phenomena in TAR.

Aim

Determine the frequency of edge loading in a cohort of explanted total ankle replacements and compare the quantitative surface characteristics using a novel explant analysis method.