header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 154 - 154
1 Jul 2014
Kurtz S Zielinska O MacDonald D Cates H Mont M Malkani A Parvizi J Kraay M Rimnac C Klein G
Full Access

Summary Statement

This study assesses oxidation, mechanical behavior and revision reasons of 2nd generation HXLPE used in total hip and knee arthroplasty. While oxidation was low for both X3 and E1 HXLPEs, oxidative regional variations were detected in the sequentially annealed cohort.

Introduction

First generation highly crosslinked polyethylenes (HXPLEs) have proven successful in lowering both penetration and osteolysis rates. However, 1st generation annealing and remelting thermal stabilization have been associated with in vivo oxidation or reduced mechanical properties. Thus, 2nd generation HXLPEs were developed to improve oxidative stability while still maintaining material properties. Little is known about the in vivo clinical failure modes of these 2nd generation HLXPEs. The purpose of this study was to assess the revision reasons, wear, oxidative stability, and mechanical behavior of retrieved sequentially annealed Vitamin E diffused HXLPE in THA and TKA.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 145 - 145
1 Jul 2014
Kurtz S MacDonald D Higgs G Gilbert J Klein G Mont M Parvizi J Kraay M Rimnac C
Full Access

Summary Statement

Fretting and corrosion has been identified as a clinical problem in modular metal-on-metal THA, but remains poorly understood in modern THA devices with polyethylene bearings. This study investigates taper damage and if this damage is associated with polyethylene wear.

Introduction

Degradation of modular head-neck tapers was raised as a concern in the 1990s (Gilbert 1993). The incidence of fretting and corrosion among modern, metal-on-polyethylene and ceramic-on-polyethylene THA systems with 36+ mm femoral heads remains poorly understood. Additionally, it is unknown whether metal debris from modular tapers could increase wear rates of highly crosslinked PE (HXLPE) liners. The purpose of this study was to characterise the severity of fretting and corrosion at head-neck modular interfaces in retrieved conventional and HXLPE THA systems and its effect on penetration rates.