header advert
Results 1 - 4 of 4
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 179 -
1 Mar 2008
Outten JT Evans BM Komistek RD Dennis DA
Full Access

The objective of this study was to compute the in vivo dynamic tibiofemoral contact forces for normal alignment, and then evaluate the change in contact forces and pressures with increasing varus-valgus and internal-external rotational malalignment of the femoral component. A three-dimensional computational model of the lower limb during deep knee bend was created using Kane’s method of dynamics. The change in forces from normal with malalignment of up to 10° valgus, 10° varus, 10° internal axial femoral rotation, and 10° internal axial femoral rotation were determined. In this study, varus-valgus malalignment had the greatest effect on medial-lateral pattelofemoral contact forces, with a maximum increase of 2.25 times body weight for 10° valgus malalignment. Axial malalignment had the greatest influence on tibiofemoral contact forces.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 179 -
1 Mar 2008
Outten JT Komistek RD Mahfouz MR Auger DD
Full Access

At present, computational modeling has not been utilized as a design tool for total knee replacement (TKR). Also, classifying a new design as successful usually requires many years of long-term clinical follow-up studies. Computational modeling presents an opportunity to contribute to implant design evaluations and prediction of long-term success, during the early stages of the implant design process. The purpose of this study was to construct a computational model that will determine and compare in vivo dynamic forces and torques of the non implanted and implanted knees. It is hypothesized that this model will provide valuable information pertaining to post-implantation boundary conditions during the design phase.

A three-dimensional (3-D), inverse dynamics model of the human lower limb was created. System differential equations were derived for the human lower extremity using Kane’s theory of dynamics.Input kinematics were obtained for five normal knees and five posterior stabilized TKR, determined while subjects performed deep knee bend while under fluoroscopic surveillance. Musculo tendinous units were assumed to act along straight line segments, and ligamentous units were represented by nonlinear elastic elements. Knee kinetics were calculated and compared fo reach group and a comparison was conducted.

Kinetics were much more variable for the TKR group, and tibiofemoral contact forces were on average higher than the normal group: 2.47 times body weight (BW) and 2.21 BW, respectively. Increased posterior femoral rollback lead to lower axial contact forces and lower quadriceps forces in both groups. Force patterns were very sensitive to input patient specific kinematics.

The predicted tibio femoral forces were higher in TKR subjects, which is consistent with current clinical knowledge. Force patterns for the normal subjects were more consistent than those forthe TKR subjects, which was primarily attributed to the greater variance in kinematics for the TKR subjects. This study represents a first step in constructing a design facilitation tool for TKR technology. Successful designs will be determined by producing kinetic patterns most similar to normal knee patterns.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 164 -
1 Mar 2008
Evans BM Outten JT Dennis DA Komistek RD
Full Access

Numerous dynamic studies have evaluated the tibiofemoral contact pressures that follow total knee arthroplasty (TKA), and several static studies utilizing finite elements and pressure sensitive film have evaluated malalignment. The objective of this study was to compute the in vivo dynamic tibiofemoral contact forces for normal alignment and evaluate the change in contact pressure with increasing malalignment of the femoral component.

A three-dimensional computational model of the lower limb during deep flexion was created using Kane’s method of dynamics. A hybrid approach was used to determine the boundary conditions of the model. The motions of a total knee arthroplasty patient were measured using fluoroscopy. The motions of the patient were varied from the normal motions to simulate malalignment of the femoral component. The change in forces with malalignments of up to 10° valgus, 10° varus, 10° internal rotation, and 10° internal rotation were determined.

An increase in the axial tibiofemoral contact force from 2.44 times body weight (BW) to 2.62 BW and a decrease in the quadriceps force from 6.8 to 5.65 BW were observed with varus malalignment. The medial-lateral patellofemoral contact force decreased from 0.95 BW to 0.1 BW with 10° varus positioning of the femur and increased to 2.2 BW with 10° valgus positioning of the femur and a decrease in the patellar ligament forces from 1.70 to 1.63 BW was observed.

Changes in the tibiofemoral and patellofemoral forces of 1–2 BW were observed as the femur was malaligned with respect to the tibia. The most significant of these changes was the medial-lateral patellofemoral contact force. The implications of these findings are that malalignment could result in increased patellar subluxation or increased wear of the polyethylene component. Concerns were raised that this initial subject evaluated may not have had optimum alignment, thus leading to more optimal bearing surface stress conditions with varus malalignment. Future studies will be evaluated for subjects having the joint line restored to conditions for non-implanted knees.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 172 - 172
1 Mar 2008
Komistek RD Dennis DA Mahfouz MR Outten JT
Full Access

The objective was to assess and compare polyethylene-bearing mobility patterns and magnitudes in various total knee arthroplasty(TKA) types of mobile bearing TKA.

In vivo kinematics were determined for 38 subjects implanted with either a PCL-retaining (PCR) mobile bearing TKA, which allows both rotation and antero-posterior (AP) translation (n=20), aposterior stabilized rotating platform (PS) TKA (n=9) or a PCL-sacrificing (PCS) rotating platform TKA (n=9) using video fluoroscopy. Using a 3D model-fitting technique, kinematics were determined during a weight-bearing deep knee bend. The femoral and tibial components and mobile bearing polyethylene insert (implanted with four tantalum beads) were overlaid onto the fluoroscopic images to determine bearing mobility. AP bearing translation was determined for subjects implanted with a PCR mobile bearing TKA. Subjects implanted with PCR and PCS TKA were evaluated at a single interval. Those with a PS TKA were evaluated at two postoperative intervals, (12 months apart) to assess changes in bearing mobility over time.

All subjects experienced polyethylene bearing rotation relative to the tibial tray and minimal rotation relative to the femoral component. The average maximum amount of bearing rotation was 10.3o (3.0o to 20.8o), 8.9o (5.3o to 14.1o), and 8.5o (3.3o to 12.9o) for subjects implanted with a PCR, PS, and PCS mobile bearing TKA, respectively. For subjects implanted with a PS mobile bearing TKA, bearing mobility increased to 9.8o (4.8o to 14.1o) one year later post-operatively. All subject shaving a PCR mobile bearing TKA experienced AP bearing translation, averaging 5.6 mm (1.0 mm to 12.5 mm).

These results demonstrate that the polyethylene bearing is rotating and translating relative to the tibial tray in all subjects. Minimal motion occurred between the femoral component and the polyethylene insert. Magnitude and direction of bearing motion varied among subjects. Paradoxical anterior translation of the bearing during deep flexion was observed in the PCR TKA group. The presence of bearing mobility should result in lower contact stresses, reducing the potential for polyethylene wear.