header advert
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 39 - 39
1 Feb 2020
Okamoto Y Otsuki S Wakama H Okayoshi T Neo M
Full Access

Introduction

The global rapid growth of the aging population has some likelihood to create a serious crisis on health-care and economy at an unprecedented pace. To extend Healthy Life Expectancy (HALE) in a number of countries, it is desired more than ever to investigate characteristic and prognosis of numerous diseases. This enlightenment and recent studies on patient-reported outcome measures (PROMs) will drive the increasing interest in the quality of life among the world.

The demand for primary THAs by 2030 would rise up to 174% in USA. It is expected that the number of the elderly will surge significantly in the future, thus more septuagenarian and octogenarian are undergoing THA. Moreover, HALE of Japanese female near the age of 75 years, followed to Singapore, is still increasing. Therefore, concerns exist about the PROMs of performing THA in this age-group worldwide. Nevertheless almost the well-established procedure, little agreement has been reached to the elderly. We aimed to clarify the mid-term PROMs after THA over 75-year old.

Methods

Between 2005 and 2013, we performed 720 consecutive primary cemented THAs through a direct lateral approach. Of these, 503 female patients (655 hips) underwent THA for treatment of osteoarthritis, with a minimum follow-up of 5 years, were retrospectively enrolled into the study. We excluded 191 patients (252 hips) aged less than 65-year at the time of surgery and 58 patients (60) because of post-traumatic arthritis or previous surgery (37), or lack of data (23). Thus, 343 hips remained eligible for our study, contributed by 254 patients. We investigated Quality-adjusted life year (QALY), EuroQol 5-Dimension 5-Level scale (EQ-5D) and the Japanese Orthopaedic Association Hip-Disease Evaluation Questionnaire (JHEQ, which was a disease-specific and self-administered questionnaire, reflecting the specificity of the Japanese cultural lifestyle) in patients aged 75 years or older (154 hips, Group-E) compared with those aged 65 to 74 years (189 hips, Group-C) retrospectively. We evaluated the association between patients aged 75 years or older and the following potential risk factors, using logistic regression analysis: age, number of vertebral fractures (VFs), American Society of Anesthesiologists physical status (ASA-PS) and Charlson Comorbidity Index (CCI). A p value of < 0.05 was considered significant for the Mann-Whitney U test.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 31 - 31
1 Feb 2020
Okayoshi T Okamoto Y Wakama H Otsuki S Nakagawa K Neo M
Full Access

Purpose

Despite total knee arthroplasty (TKA) is a successful surgical procedure with end-stage knee osteoarthritis, approximately 20% of the patients who underwent primary TKA were still dissatisfied with the outcome. Thereby, numerous literatures have confirmed the relationship between soft tissue balancing and clinical result to improve this pressing issue. Recently, there has been an increased research interest in patient-reported outcome measures (PROMs) after TKA. However, there is little agreement on the association between soft tissue balancing and PROMs. Therefore, the purpose of this study was to determine whether intraoperative soft tissue balancing affected PROMs after primary TKA. We hypothesized that soft tissue balancing would be a predictive factor for postoperative PROMs at one-year post-surgery.

Patients and Methods

The study included 20 knees treated for a varus osteoarthritic deformity using a cruciate-retaining TKA (Scorpio NRG) with a polyethylene insert thickness of 8 mm retrospectively. Following the osteotomy using the measured resection technique, the extension gap was measured with a femoral trial by using an electric tensor. This instrument could estimate the soft tissue balance applying continuous distraction force simultaneously from 0 to 40 lbf with an accuracy of the 0.1 lbf.

We evaluated the association between a distraction force required for an extension gap of 8 mm, and the following potentially affected factors at one year postoperatively: knee flexion angle using a protractor with one degree increments; radiographic parameters of component alignment, namely the femoral and tibial component medial angle; and the Japanese Knee Osteoarthritis Measure (JKOM). This is a disease-specific and self-administered questionnaire, reflecting the specificity of the Japanese cultural lifestyle, consisting of 25 items scored from 0 to 100 points, with 100 points being worst.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 2 - 2
1 Apr 2019
Okamoto Y Otsuki S Okayoshi T Wakama H Murakami T Nakagawa K Neo M
Full Access

Although the pre- or intraoperative flexion angle in TKA has been commonly considered as a predictor of the postoperative flexion angle, patients with well flexion intraoperatively cannot necessarily obtain deep flexion angle postoperatively. The reason why inconsistencies remains has been unsolved. The intraoperative compressive force between femoral and tibial components has the advantage of the sequential changes during knee motion. However, the relationship between the compressive force and the postoperative ROM has not yet been clarified. We aimed to evaluate the intraoperative femorotibial compressive force during passive knee motion, and determine the relationship between the compressive force and the postoperative flexion angle.

A total of 11 knees in 10 patients who underwent primary cruciate-retaining (CR) TKA (The FINE Total Knee System; Teijin Nakashima Medical Co., Ltd., Okayama, Japan) for osteoarthritis were studied retrospectively, with a mean age of 76 years via a measured resection technique. We developed a customized measurement device mimicking the tibial component with this platform of six load sensors arranged in two rows (medial and lateral) by three tandem sets (anterior, center and posterior): anteromedial (AM), anterolateral (AL); centromedial (CM), centrolateral (CL); and posteromedial (PM), posterolateral compartment (PL) (Fig. 1). At the step of the implant trial, this device was placed on the tibia with compressive force recorded three times, while the knee was subsequently taken from 0° to full flexion manually in 15 seconds with the flexion angle of the knee recorded simultaneously by using an electric goniometer (Fig. 2). Eligibility were evaluated for ROM using a long-armed goniometer preoperatively and at 6 months postoperatively. A p value of < 0.05 was considered significant.

The mean compressive force at AM, AL, CM, CL, PM and PL was 0.7, 0.5, 1.3, 1.2, 3.4 and 2.6 kgf, with the peak force of 4.2, 2.5, 4.1, 2.5, 7.3 and 4.7 kgf, respectively. The mean pre- and postoperative extension and flexion angles were −11° and −6°; and 115° and 113°, respectively. There were no significant correlations between the mean force in any region of interest (AM to PL) and the postoperative flexion angle. The peak force in PM showed little correlation with the postoperative flexion angle (r = −0.17, p = 0.54), however, that in PL was strongly negatively correlated with the postoperative flexion (r = −0.86, p < 0.01).

The current results suggest the presence of less force on the lateral side in flexion. We speculate that lower compressive force at the lateral side is essential for deep flexion as it has been reported that the lateral structure has more laxity than the medial side during flexion in healthy knees. Measurement between the femoral and tibial compressive force can contribute an achievement of more flexion angle following CR-TKA.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 28 - 28
1 Oct 2012
Takemoto M Neo M Fujibayashi S Okamoto T Ota E Sakamoto T Nakamura T
Full Access

The accuracy of pedicle screw placement is essential for successful spinal reconstructive surgery. The authors of several previous studies have described the use of image-based navigational templates for pedicle screw placement. These are designed based on a pre-operative computed tomographic (CT) image that fits into a unique position on an individual's bone, and holes are carefully designed to guide the drill or the pedicle probe through a pre-planned trajectory. The current study was conducted to optimise navigational template design and establish its designing method for safe and accurate pedicle screw placement.

Thin-section CT scans were obtained from 10 spine surgery patients including 7 patients with adolescent idiopathic scoliosis (AIS) and three with thoracic ossification of the posterior longitudinal ligament (OPLL). The CT image data were transferred to the commercially available image-processing software and were used to reconstruct a three-dimensional (3D) model of the bony structures and plan pedicle screw placement. These data were transferred to the 3D-CAD software for the design of the template. Care was taken in designing the template so that the best intraoperative handling would be achieved by choosing several round contact surfaces on the visualised posterior vertebral bony structure, such as transverse process, spinous process and lamina. These contact surfaces and holes to guide the drill or the pedicle probe were then connected by a curved pipe. STL format files for the bony models with planned pedicle screw holes and individual templates were prepared for rapid prototype fabrication of the physical models. The bony models were made using gypsum-based 3D printer and individual templates were fabricated by a selective laser melting machine using commercially pure titanium powder. Pedicle screw trajectory of the bony model, adaptation and stability of the template on the bony model, and screw hole orientation of the template were evaluated using physical models. Custom-made titanium templates with adequate adaptation and stability in addition to proper orientation of the screw holes were sterilised by autoclave and evaluated during surgery.

During segmentation, reproducibility of transverse and spinous processes were inferior to the lamina and considered inadequate to select as contact surfaces. A template design with more bone contact area might enhance the stability of the template on the bone but it is susceptible to intervening soft tissue and geometric inaccuracy of the template. In the bony model evaluation, the stability and adaptation of the templates were sufficient with few small round contact surfaces on each lamina; thus, a large contact surface was not necessary. In clinical patients, proper fit for positioning the template was easily found manually during the operation and 141/142 screws were inserted accurately with 1 insignificant pedicle wall breach in AIS patient.

This study provides a useful design concept for the development and introduction of custom-fit navigational template for placing pedicle screws easily and safely.