header advert
Results 1 - 2 of 2
Results per page:
Bone & Joint Research
Vol. 6, Issue 5 | Pages 277 - 283
1 May 2017
Yoshikawa M Nakasa T Ishikawa M Adachi N Ochi M

Objectives

Regenerative medicine is an emerging field aimed at the repair and regeneration of various tissues. To this end, cytokines (CKs), growth factors (GFs), and stem/progenitor cells have been applied in this field. However, obtaining and preparing these candidates requires invasive, costly, and time-consuming procedures. We hypothesised that skeletal muscle could be a favorable candidate tissue for the concept of a point-of-care approach. The purpose of this study was to characterize and confirm the biological potential of skeletal muscle supernatant for use in regenerative medicine.

Methods

Semitendinosus muscle was used after harvesting tendon from patients who underwent anterior cruciate ligament reconstructions. A total of 500 milligrams of stripped muscle was minced and mixed with 1 mL of saline. The collected supernatant was analysed by enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The biological effects of the supernatant on cell proliferation, osteogenesis, and angiogenesis in vitro were evaluated using human mesenchymal stem cells (hMSCs) and human umbilical cord vein endothelial cells (HUVECs).


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 126 - 126
1 Jul 2014
Eguchi A Ochi M Adachi N Deie M Nakamae A Nakasa T
Full Access

Summary Statement

We evaluated the mechanical strength of two cortical suspension devices by reproducing clinical situation for ACL reconstruction. A most important factor affecting the displacement during cyclic load was the length of the tendon rather than the length of the device.

Introduction

A definite consensus for the optimal graft fixation technique to the femur in an anterior cruciate ligament (ACL) reconstruction has not been reached, although there have been several fixation techniques such as cortical suspension devices, transfixation devices, and interference screws. The purpose of this study was to evaluate the mechanical strength of two cortical suspension devices by reproducing actual clinical situation for ACL reconstruction in order to compare the TightRopeTM as a new adjustable-length loop device and the EndoButtonTM as a well-known fixed-length loop device under the consistent conditions.