header advert
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_5 | Pages 6 - 6
23 Apr 2024
Mistry D Rahman U Khatri C Carlos W Stephens A Riemer B Ward J
Full Access

Introduction

Continuous compression implants (CCIs) are small memory alloy bone staples that can provide continuous compression across a fracture site, which change shape due to temperature changes. Reviews of CCIs in orthopaedics have documented their use in mainly foot and ankle surgery, with very limited descriptions in trauma. They could be beneficial in the management of complex or open injuries due to their low profile and quick insertion time. The aim of this case series were to clarify the use of CCIs in modern day limb reconstruction practice.

Materials & Methods

This was a single centred study looking retrospectively at prospective data for patients who were treated for an acute fracture or non-union with a CCI between September 2019 and May 2023. Primary outcome was to determine the function and indication of the CCI as judged retrospectively and secondary outcomes investigated unplanned returns to theatre for infection or CCI failure.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 10 - 10
7 Jun 2023
Mistry D Ahmed U Aujla R Aslam N D'Alessandro P Malik S
Full Access

Industries such as agriculture, construction and military have stringent rules about hearing protection due to the risk of noise induced hearing loss (NIHL). Due to the use of power tools, orthopaedic staff may be at risk of the same condition. The UK Health and Safety Executive (HSE) have clear standards as to what is deemed acceptable occupational noise levels on an A-weighted and C weighted scale. This review is aimed to assess evidence on noise exposure testing within Orthopaedic theatres to see if it exceeds the HSE regulations.

A targeted search of online databases PUBMED and EMBASE was conducted using Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) principles. This review was registered prospectively in PROSPERO. An eligibility criterion identifying clinical studies which assessed noise exposure for Orthopaedic staff in theatres were included. Noise exposure data was extracted from these studies and a comparison was made with A weighted and C weighted acceptable exposure levels as quoted in the HSE regulations.

Fourteen papers were deemed eligible, which reviewed 133 Orthopaedic operations and 64 Orthopaedic instruments. In total, 61% (81 of 132) of Orthopaedic operations and 70% (45 of 64) of instruments exceeded the noise regulations on an A weighted scale. 22% (10 of 46) of operations exceeded the maximum C weighted peak acceptable noise level.

Orthopaedic instruments and operations can exceed safe occupational noise levels. NHS Trusts have clear policies about noise exposure in the workplace but have yet to identify Orthopaedic theatres as a potential at risk area. Orthopaedic staff need education, monitoring and protection whereas Employers and Occupational Health should consider assessments to identify at risk staff in Orthopaedic theatres and offer preventative methods from NIHL.


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 602 - 609
1 Jun 2023
Mistry D Ahmed U Aujla R Aslam N D’Alessandro P Malik S

Aims

In the UK, the agricultural, military, and construction sectors have stringent rules about the use of hearing protection due to the risk of noise-induced hearing loss. Orthopaedic staff may also be at risk due to the use of power tools. The UK Health and Safety Executive (HSE) have clear standards as to what are deemed acceptable occupational levels of noise on A-weighted and C-weighted scales. The aims of this review were to assess the current evidence on the testing of exposure to noise in orthopaedic operating theatres to see if it exceeds these regulations.

Methods

A search of PubMed and EMBASE databases was conducted using PRISMA guidelines. The review was registered prospectively in PROSPERO. Studies which assessed the exposure to noise for orthopaedic staff in operating theatres were included. Data about the exposure to noise were extracted from these studies and compared with the A-weighted and C-weighted acceptable levels described in the HSE regulations.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_4 | Pages 33 - 33
1 Jan 2013
Annetts S Coales P Colville R Mistry D Moles K Thomas B van Deursen R
Full Access

Background

Office seating includes a variety of chair styles. There is limited research investigating their effects on spinal angles.

Purpose of Study

Investigate effects of active (Swopper and Vari-Kneeler), and static (Saddle and a Standard Office) chairs on lumbo-pelvic and cervical regions.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 456 - 457
1 Oct 2006
Mistry D Robertson P
Full Access

Introduction Central placement of a total disc arthroplasty (TDA) in the coronal plane will result in equivalent facet joint loading, less tendency for lateral core migration, optimum kinematics, and better outcomes. This study was performed to determine which of the radiographic markers – the vertebral body, the pedicles, or the spinous process – provides the most accurate guide to the coronal midline, so to optimise coronal TDA. The coronal midline was defined as the perpendicular bisector of a line drawn between the midpoints of the two facet joints.

Methods Axial CT images were reconstructed from 35 abdominal CT’s to show the relevant anatomy at L4, L5, and S1. Measurements were taken comparing the consistency of the midpoints of the vertebral body, the pedicles, and the spinous processes, in relation to the coronal midline.

Results The mean distance from the coronal midline to the vertebral body midpoint was 0.55mm (SD 0.45), to the interpedicular midpoint was 0.19mm (SD 0.40), and to the spinous process midpoint was and 1.30mm (SD 1.30). 16% of the distances from the coronal midline to the spinous process midpoint were greater than or equal to 3mm, compared with 0% of the distances to the interpedicular midpoint or the vertebral body midpoint. The interpedicular midpoint was significantly closer to the coronal midline than the spinous process midpoint or the vertebral body midpoint at all levels (p< 0.001).

Discussion The interpedicular midpoint is the most accurate guide to the coronal midline. We recommend this landmark be used in preference to the spinous processes or the vertebral body midpoint when placing the implant in TDA. The close location of the interpedicular midpoint to the implant, compared with the more posteriorly located spinous process, means the likelihood of parallax error, by rotation of the patient or the C arm, is reduced using the interpedicular midpoint.