header advert
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 20 - 20
1 Mar 2017
Milone M Vigdorchik J Schwarzkopf R Jerabek S
Full Access

INTRODUCTION

Acetabular cup malpositioning has been implicated in instability and wear-related complications after total hip arthroplasty. Although computer navigation and robotic assistance have been shown to improve the precision of implant placement, most surgeons use mechanical and visual guides to place acetabular components. Authors have shown that, when using a bean bag positioner, mechanical guides are misleading as they are unable to account for the variability in pelvic orientation during positioning and surgery. However, more rigid patient positioning devices may allow for more accurate free hand cup placement. To our knowledge, no study has assessed the ability of rigid devices to afford surgeons with ideal pelvic positioning throughout surgery. The purpose of this study is to utilize robotic-arm assisted computer navigation to assess the reliability of pelvic position in total hip arthroplasty performed on patients positioned with rigid positioning devices.

METHODS

100 hips (94 patients) prospectively underwent total hip Makoplasty in the lateral decubitus position from the posterior approach; 77 stabilized by universal lateral positioner, and 23 by peg board. After dislocation but prior to reaming, one fellowship trained arthroplasty surgeon manually placed the robotic arm parallel to both the longitudinal axis of the patient and the horizontal surface of the operating table, which, if the pelvis were oriented perfectly, would represent 0 degrees of anteversion and 0 degrees of inclination. The CT-templated computer software then generated true values of this perceived zero degrees of anteversion and inclination based on the position of the robot arm registered to a preoperative pelvic CT. Therefore, variations in pelvic positioning are represented by these robotic navigation generated values. To assure the accuracy of robotic measurements, cup anteversion and inclination at times of impaction were recorded and compared to those calculated via the trigonometric ellipse method of Lewinnek on standardized 3 months postoperative X-rays.