header advert
Results 1 - 2 of 2
Results per page:
Bone & Joint Open
Vol. 4, Issue 11 | Pages 873 - 880
17 Nov 2023
Swaby L Perry DC Walker K Hind D Mills A Jayasuriya R Totton N Desoysa L Chatters R Young B Sherratt F Latimer N Keetharuth A Kenison L Walters S Gardner A Ahuja S Campbell L Greenwood S Cole A

Aims

Scoliosis is a lateral curvature of the spine with associated rotation, often causing distress due to appearance. For some curves, there is good evidence to support the use of a spinal brace, worn for 20 to 24 hours a day to minimize the curve, making it as straight as possible during growth, preventing progression. Compliance can be poor due to appearance and comfort. A night-time brace, worn for eight to 12 hours, can achieve higher levels of curve correction while patients are supine, and could be preferable for patients, but evidence of efficacy is limited. This is the protocol for a randomized controlled trial of ‘full-time bracing’ versus ‘night-time bracing’ in adolescent idiopathic scoliosis (AIS).

Methods

UK paediatric spine clinics will recruit 780 participants aged ten to 15 years-old with AIS, Risser stage 0, 1, or 2, and curve size (Cobb angle) 20° to 40° with apex at or below T7. Patients are randomly allocated 1:1, to either full-time or night-time bracing. A qualitative sub-study will explore communication and experiences of families in terms of bracing and research. Patient and Public Involvement & Engagement informed study design and will assist with aspects of trial delivery and dissemination.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_8 | Pages 5 - 5
1 Aug 2022
Wardell D Jayasuriya R Totton N Mills A Breakwell L Cole A
Full Access

Thermal sensors have been used in bracing research as self-reported diaries are inaccurate. Little is known about new low-profile sensors, optimal location within a brace, locational thermal micro-climate and effect of brace lining. Our objective is to Determine an optimal temperature threshold for sensor-measured and true wear time agreement. Identify optimal sensor location. Assess all factors to determine the best sensor option for the Bracing AdoleScent Idiopathic Scoliosis (BASIS) multicentre RCT.

Seven Orthotimer and five iButton (DS1925L) sensors were synchronised to record temperature at five-minute intervals. Three healthy participants donned a rigid spinal brace, embedded with both sensors across four anatomical locations (abdomen/axilla/lateral-gluteal/sacral). Universal-coordinated-time wear protocols were performed in/out-doors. Intraclass correlation coefficient (ICC) assessed sensor-measured and true wear time agreement at thresholds 15–36oC.

Optimal thresholds, determined by largest ICC estimate: Orthotimer: Abdomen=26oC, axilla=27oC, lateral-gluteal=24.5oC, sacral=22.5oC. iButton: Abdomen=26oC, axilla=27oC, lateral-gluteal=23.5oC, sacral=23.5oC. Warm-up time and error at optimal thresholds increased for moulded sensors covered with 6mm lining.

Location: anterior abdominal wall. Excellent reliability and higher optimal thresholds, less likely to be exceeded by ambient temperature; not a pressure area. Sensor: iButton, longer battery life and larger memory than Orthotimer; allows recording at 10 min intervals for life of brace. Orthotimer only able to record every 30 mins, increasing error between true and measured wear time; Orthotimer needs 6-monthly data download. Threshold: 26oC is optimal threshold to balance warm-up and cool-down times for accurately measuring wear time. Sensor should not be covered by lining foam as this significantly prolongs warm-up time.