header advert
Results 1 - 6 of 6
Results per page:
Bone & Joint Research
Vol. 8, Issue 1 | Pages 11 - 18
1 Jan 2019
McLean M McCall K Smith IDM Blyth M Kitson SM Crowe LAN Leach WJ Rooney BP Spencer SJ Mullen M Campton JL McInnes IB Akbar M Millar NL

Objectives

Tranexamic acid (TXA) is an anti-fibrinolytic medication commonly used to reduce perioperative bleeding. Increasingly, topical administration as an intra-articular injection or perioperative wash is being administered during surgery. Adult soft tissues have a poor regenerative capacity and therefore damage to these tissues can be harmful to the patient. This study investigated the effects of TXA on human periarticular tissues and primary cell cultures using clinically relevant concentrations.

Methods

Tendon, synovium, and cartilage obtained from routine orthopaedic surgeries were used for ex vivo and in vitro studies using various concentrations of TXA. The in vitro effect of TXA on primary cultured tenocytes, fibroblast-like synoviocytes, and chondrocytes was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assays, fluorescent microscopy, and multi-protein apoptotic arrays for cell death.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 385 - 386
1 Jul 2011
Millar NL Deakin AH Millar LL Picard F
Full Access

Recent studies suggest the use of computer navigation during TKA can reduce intraoperative blood loss. The purpose of this study was to assess if navigation affected blood loss after TKA in the morbidly obese patient (BMI> 40).

Total body blood loss was calculated from body weight, height and haemotocrit change, using a model which accurately assess true blood loss.

The computer navigated group comprised of 60 patients, 30 with BMI > 40 and 30 with BMI< 30. The matched conventional knee arthroplasty group consisted of 62 consecutive patients, 31 with BMI> 40 and 31 with BMI< 30 The groups were matched for age, gender, diagnosis and operative technique.

Following TKA, the mean total loss was 1014mls (521-1942, SD 312) in the computer assisted group and 1287mls (687-2356, SD 330) in the conventional group. This difference was statistically different (p< 0.001). The mean calculated loss of haemoglobin was 19 g/dl in the navigated group versus 25 g/dl in the conventional group; this was also significant at p< 0.01. The mean total loss was 1105mls in patients with a BMI> 40 in the navigated group compared to 1300mls in the conventional group (p< 0.01). A significant correlation was found between total blood loss and BMI (r=0.2, p< 0.05).

This study confirms a highly significant reduction in total body blood loss and calculated Hb loss between computer assisted and conventional TKA in obese patients. Therefore navigation-assisted TKA could present an effective and safe method for reducing blood loss and preventing blood transfusion in obese patients undergoing TKA.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 421 - 421
1 Jul 2010
Millar NL Deakin AH Millar LL Picard F
Full Access

Computer navigated total knee arthroplasty (TKA) has several proposed benefits including reduced post operative blood loss. We compared the total blood volume loss in a cohort of morbidly obese (BMI> 40) patients undergoing computer navigated (n=30) or standard intramedullary techniques (n=30) with a cohort of matched patients with a BMI< 30 also undergoing navigated (n=31) or standard TKA (n=31). Total body blood loss was calculated from body weight, height and haemotocrit change, using a model which accurately assesses true blood loss as was maximum allowable blood loss. The groups were matched for age, gender, diagnosis and operative technique.

The mean true blood volume loss was significantly (p< 0.001) less in the computer assisted group (1014±312mls) compared to the conventional group (1287±330mls). Patients with a BMI > 40 and a computer navigated procedure (1105 ±321mls) had a significantly lower (p< 0.001) blood volume loss compared to those who underwent a conventional TKA (1399±330mls). There was no significant difference in the transfusion rate or those reaching the maximum allowable blood loss between groups.

This study confirms a significant reduction in total body blood loss between computer assisted and conventional TKA in morbidly obese patients. However computer navigation did not affect the transfusion rate or those reaching the transfusion trigger in the morbidly obese group. Therefore computer navigation may reduce blood loss in the morbidly obese patient but this may not be clinically relevant to transfusion requirements as previously suggested.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 421 - 421
1 Jul 2010
Millar NL Deakin A Millar LL Picard F
Full Access

The influence of BMI on outcomes from TKA remains unclear. The purpose of this study was to evaluate if navigation affected the outcomes of TKA in obese patients.

Sixty-four (mean age 65 yrs±7) consecutive computer navigated TKA’s were compared with a matched group of 64 (65yrs±8) conventional TKA’s in patients with a BMI > 35. The groups were matched for age, gender, diagnosis and operative technique. Patients were reviewed pre-operatively and 6 weeks and 1 year post-operatively. All patients had clinical and radiological assessment and were scored using the Oxford knee score.

There were significant improvements (p< 0.001) in all clinical outcomes at 6 weeks and 1 year post-operatively in both groups. No significant differences were found between groups 6 weeks post surgery. The computer navigated group performed significantly better in post operative knee flexion (Nav 99° ± 10, Conv 94° ±12, p< 0.05) and Oxford scores (Nav 20 ± 10, Conv 25±12, p< 0.01) at 1 year compared to the conventional group. There were significantly (p< 0.05) more flexion contractures one year post-operatively in the conventional group which correlated significantly (p< 0.001) with decreased maximal knee flexion at one year.

This study suggests that navigated TKA produces better early clinical outcomes than conventional TKA in the obese patients possibly due to improved sagittal alignment as evidenced by the lack of flexion contractures 1 year post-operatively.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 3 | Pages 417 - 424
1 Mar 2009
Millar NL Wei AQ Molloy TJ Bonar F Murrell GAC

The role of inflammatory cells and their products in tendinopathy is not completely understood. Pro-inflammatory cytokines are upregulated after oxidative and other forms of stress. Based on observations that increased cytokine expression has been demonstrated in cyclically-loaded tendon cells we hypothesised that because of their role in oxidative stress and apoptosis, pro-inflammatory cytokines may be present in rodent and human models of tendinopathy. A rat supraspinatus tendinopathy model produced by running overuse was investigated at the genetic level by custom micro-arrays. Additionally, samples of torn supraspinatus tendon and matched intact subscapularis tendon were collected from patients undergoing arthroscopic shoulder surgery for rotator-cuff tears and control samples of subscapularis tendon from ten patients with normal rotator cuffs undergoing arthroscopic stabilisation of the shoulder were also obtained. These were all evaluated using semiquantitative reverse transcription polymerase chain-reaction and immunohistochemistry.

We identified significant upregulation of pro-inflammatory cytokines and apoptotic genes in the rodent model (p = 0.005). We further confirmed significantly increased levels of cytokine and apoptotic genes in human supraspinatus and subscapularis tendon harvested from patients with rotator cuff tears (p = 0.0008).

These findings suggest that pro-inflammatory cytokines may play a role in tendinopathy and may provide a target for preventing tendinopathies.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 6 | Pages 745 - 750
1 Jun 2008
Millar NL Murrell GAC

We identified ten patients who underwent arthroscopic revision of anterior shoulder stabilisation between 1999 and 2005. Their results were compared with 15 patients, matched for age and gender, who had a primary arthroscopic stabilisation during the same period.

At a mean follow-up of 37 and 36 months, respectively, the scores for pain and shoulder function improved significantly between the pre-operative and follow-up visits in both groups (p = 0.002), with no significant difference between them (p = 0.4). The UCLA and Rowe shoulder scores improved significantly (p = 0.004 and p = 0.002, respectively), with no statistically significant differences between groups (p = 0.6). Kaplan-Meier analysis for time to recurrent instability showed no differences between the groups (p = 0.2).

These results suggest that arthroscopic revision anterior shoulder stabilisation is as reliable as primary arthroscopic stabilisation for patients who have had previous open surgery for recurrent anterior instability.