header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 85 - 85
1 Mar 2021
Chia DT Sibbel J Edwards D Melton J
Full Access

Revision anterior cruciate ligament (ACL) reconstruction is a technically demanding procedure, reporting poorer outcomes compared to the primary procedure. Identification of the cause of primary failure and a thorough pre-operative evaluation is required to plan the most appropriate surgical approach. 3D printing technology has become increasingly commonplace in the surgical setting. In particular, patient-specific anatomical models can be used to aid pre-operative planning of complicated procedures. We have conducted a qualitative study to gauge the interest amongst orthopaedic knee surgeons in using a 3D-printed model to plan revision ACL reconstructions.

A tibia and femur model was printed from one patient who is a candidate for the procedure. The binder jetting printing technique was performed, using Visijet PXL Core powder. 12 orthopaedic knee surgeons assessed the usefulness of the 3D-printed model compared to conventional CT images on a likert scale. 6 key steps of preoperative planning were assessed, including the size and location of the tunnel defects, the need for notchplasty, and whether a staged revision was required.

We found that surgeons preferred the 3D-printed model to conventional CT images only, and 83% of them would use such a model for both pre-operative simulation, and as an intra-operative reference. However, there were some variation in the perceived usefulness of the model in several areas assessed. This may reflect differences in individual approach towards planning of the procedure.

Our findings suggest that 3D-printed models could be a versatile pre-operative and intra-operative tool for complicated arthroscopic knee surgery. While 3D printing technology is becoming increasingly accessible and affordable, in-depth cost-effectiveness studies need to be conducted before it can be integrated into clinical. Further study would be needed to determine the clinical utility and economic cost-effectiveness of the 3D-printed model in revision ACL reconstruction.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 9 - 9
1 Nov 2018
Houlden R Peat F Barrett M Melton J
Full Access

Acute multiligament knee injuries (MLKI) are rare, high energy traumatic injuries associated with an increased risk of lower limb complications. The objectives of this study were to investigate the adequacy of clinical assessment for neurovascular status, compartment syndrome, and deep vein thrombosis in the emergency department (ED) following acute MLKI. The authors conducted a retrospective case note review of 19 patients with MLKI presenting at the ED of a Major Trauma Centre during a 7.5-year period between June 2009 and December 2016. MLKIs were diagnosed by MRI or examination under anaesthesia and confirmed intraoperatively. Arterial assessment consisted of documented capillary refill time, dorsalis pedis and posterior tibial pulse assessment (through palpation or Doppler ultrasound), and ankle-brachial pressure index (ABPI) calculation. Neural assessment was adequate if there was documented assessment of both sensory and motor function of the superficial peroneal, deep peroneal and tibial nerves individually. Data was collected for 19 patients (17 male, 2 female). The mean age was 34 (range: 14–61). The most common injury mechanism was road traffic accident. Neurovascular assessment was suboptimal in all categories: only one patient received a satisfactory lower limb neurological assessment and no patients received complete vascular assessments. Neurovascular assessment of multiligament knee injuries was suboptimal. Reasons for this included poor documentation and lack of certain specific clinical assessments, such as ABPI calculation. We propose the introduction of an acute knee injury pro forma highlighting the components of a full lower limb neurovascular examination to rectify this problem.