header advert
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 56 - 56
1 Mar 2021
Malik S Hart D Parashin S McRae S Peeler J MacDonald P
Full Access

Abstract

Objectives

ACL graft-suture fixation can be constructed with needle or needleless techniques. Needleless techniques have advantages of decreased injury, preparation time and cost. The Nice Knot (NK) is common among upper extremity procedures; however, its efficacy in ACL reconstruction relative to other needleless methods is not well known. The purpose of this study was to biomechanically compare quadriceps tendon (QT) grafts prepared with the NK versus the modified Prusik Knot (PK).

Methods

Twenty QT grafts were harvested from 10 embalmed human cadaver specimens. 10 were prepared with the PK and 10 with the NK using a No.2 FiberWire (Arthrex, Naples, FL). The prepared grafts were then mounted in a materials testing machine (ElectroPuls E10000, Instron, Norwood, MA) and subjected to tensile loading based on an established protocol. Each tendon-suture specimen was preconditioned with 3 cycles of 0–100N at 1Hz followed by a constant load of 50N for 1 minute and cyclic loading of 200 cycles from 50–200N at 1Hz and then loaded to failure at a displacement rate of 20mm/min. Load and displacement data for each tendon-suture construct was recorded by the testing machine.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 26 - 26
1 Mar 2021
Malik S Hart D Parashin S Malik S McRae S MacDonald P
Full Access

Abstract

Objectives

To evaluate mechanical properties of three suture-tendon constructs, the Krackow stitch (KS), the modified Prusik knot (PK) and the Locking SpeedWhip (LSW), using human cadaveric quadriceps grafts (QT).

Methods

Thirty QT grafts were obtained from human cadaver specimens and an equal number of tendon-suture constructs were prepared for three stitches: KS, PK and LSW. The constructs were mounted in a materials testing machine (ElectroPuls E10000, Instron, Norwood, MA) and subject to tensile loading based on an established protocol. Load and displacement data for each tendon-suture construct were recorded.


Abstract

Objectives

Initial performance of sutured quadriceps tendon (QT) ACL graft constructs is not well studied in human tissue and the results of animal tissue testing may not extend to the human model. Two common methods of preserving human tissue are to freeze the specimens immediately after death or embalm with formalin solution. The purpose of this study is to compare elongations and loads in biomechanical testing of fresh-frozen to that of embalmed quadriceps tendon-suture constructs.

Methods

Twenty QT grafts were harvested from human cadaver specimens, 10 fresh-frozen and 10 embalmed. The grafts were prepared with the modified Prusik knot using a No.2 FiberWire (Arthrex, Naples, FL), mounted in a materials testing machine (ElectroPuls E10000, Instron, Norwood, MA) and subjected to tensile loading based on an established protocol. Each tendon was preconditioned with 3 cycles of 0–100N at 1Hz followed by a constant load of 50N for 1 minute and 200 cycles from 50–200N at 1Hz and then loaded to failure at a displacement rate of 20mm/min. Load and displacement data for each tendon-suture construct was recorded.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 23 - 23
1 May 2017
Jordan R Jones A Malik S
Full Access

Introduction

The stability of the elbow joint following an acute elbow dislocation is dependent on associated injuries. The ability to identify these concomitant injuries correctly directs management and improves the chances of a successful outcome. Interpretation of plain radiographs in the presence of either a dislocation or post-reduction films with plaster in-situ is difficult. This study aimed to assess the ability of orthopaedic registrars to accurately identify associated bony injuries on initial plain radiographs using CT as the gold standard for comparison.

Methods

Patients over the age of 16 years undergoing an elbow CT scan within one week of a documented elbow dislocation between 1st June 2010 and 1st June 2014 were included in the study. Three orthopaedic registrars independently reviewed both the initial dislocation and immediate post reduction plain radiographs to identify any associated bony injuries. This radiograph review was repeated by each registrar after two weeks. The incidence of associated injuries as well as the inter- and intra-observer variability was calculated.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 63 - 63
1 Jan 2017
Prakash R Malik S Hussain S Budair B Ranjitkar S Prakash D
Full Access

During revision THR, the surgery is often difficult and compromised due to lack of patient's bone especially in the pelvis. Any extra bone in the acetabulum is expected to be of advantage to the patient and the surgeon. The aim of this study was to see if preservation of medial acetabular osteophyte in uncemented total hip replacement had any adverse effect on the prosthesis survival or patient satisfaction.

Conventional acetabular preparation involves reaming down to the true floor. This not only medialises the centre of rotation of the hip but also reduces the acetabular offset. In contrast the main surgeon preserved the acetabular offset by preserving some osteophytic bone between the true floor of the acetabulum and the acetabular cup. This is achieved by reaming the acetabular cavity conservatively while achieving secure primary fixation of the prosthesis. We report the outcome of a single surgeon series of such cases. The endpoint was assessed as the need for revision of the acetabular cup.

A total of 106 consecutive patients were identified who underwent uncemented THR from 2005 to 2010. The medial osteophyte was measured on immediate post-operative x-rays, from the “teardrop” to the nearest point of the acetabular cup, by 3 surgeons (one consultant and 2 registrars). The patients were contacted for a telephone interview and their clinical notes, including x-rays, were reviewed.

Outcome was available for 79 patients. 74 patients were available for follow-up and 5 patients died unrelated to THR. Average follow-up was for 8.3 years (range 5.5–10.8). Average age was 62 years. The average medial osteophyte was 1.98 mm (range 0–14mm). One patient had late infection and one had dislocation. There was not a single failure of the acetabular component. The patient satisfaction was high at 8.8 out of 10.

Preservation of medial osteophyte in the acetabulum whilst doing uncemented THR has the advantage of retaining the patient's own bone stock which can be of great advantage to the surgeon as well as the patient should revision THR be required in future. Our study has shown that this can be achieved without compromising the survival of the prosthesis or the patient satisfaction.

This technique may increase the range of motion of the hip by reducing the risk of bony or soft tissue impingement, and also reduce the risk of dislocation. Furthermore, not recreating the native centre of rotation of the hip does not seem to have any adverse effect for the patients, who are very happy with the outcome. We recommend that whilst doing uncemented THR, the acetabulum should not be reamed to the true floor as has been the conventional teaching, but attempt should be made to preserve some medial osteophyte where possible, at the same ensuring that good primary fixation of the cup is achieved. This is to give the patient and surgeon the advantage of extra available bone should revision surgery be required in the future.