header advert
Results 1 - 9 of 9
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 39 - 39
1 Dec 2022
Grammatopoulos G Pierrepont J Madurawe C Innmann MM Vigdorchik J Shimmin A
Full Access

A stiff spine leads to increased demand on the hip, creating an increased risk of total hip arthroplasty (THA) dislocation. Several authors propose that a change in sacral slope of ≤10° between the standing and relaxed-seated positions (ΔSSstanding→relaxed-seated) identifies a patient with a stiff lumbar spine and have suggested use of dual-mobility bearings for such patients. However, such assessment may not adequately test the lumbar spine to draw such conclusions. The aim of this study was to assess how accurately ΔSSstanding→relaxed-seated can identify patients with a stiff spine.

This is a prospective, multi-centre, consecutive cohort series. Two-hundred and twenty-four patients, pre-THA, had standing, relaxed-seated and flexed-seated lateral radiographs. Sacral slope and lumbar lordosis were measured on each functional X-ray. ΔSSstanding→relaxed-seated seated was determined by the change in sacral slope between the standing and relaxed-seated positions. Lumbar flexion (LF) was defined as the difference in lumbar lordotic angle between standing and flexed-seated. LF≤20° was considered a stiff spine. The predictive value of ΔSSstanding→relaxed-seated for characterising a stiff spine was assessed.

A weak correlation between ΔSSstanding→relaxed-seated and LF was identified (r2= 0.15). Fifty-four patients (24%) had ΔSSstanding→relaxed-seated ≤10° and 16 patients (7%) had a stiff spine. Of the 54 patients with ΔSSstanding→relaxed-seated ≤10°, 9 had a stiff spine. The positive predictive value of ΔSSstanding→relaxed-seated ≤10° for identifying a stiff spine was 17%.

ΔSSstanding→relaxed-seated ≤10° was not correlated with a stiff spine in this cohort. Utilising this simplified approach could lead to a six-fold overprediction of patients with a stiff lumbar spine. This, in turn, could lead to an overprediction of patients with abnormal spinopelvic mobility, unnecessary use of dual mobility bearings and incorrect targets for component alignment. Referring to patients ΔSSstanding→relaxed-seated ≤10° as being stiff can be misleading; we thus recommend use of the flexed-seated position to effectively assess pre-operative spinopelvic mobility.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_14 | Pages 20 - 20
1 Nov 2021
Shimmin A Dhawan R Madurawe C Pierrepont J Baré J
Full Access

Adverse spinopelvic mobility (SPM) has been shown to increase risk of dislocation of primary total hip arthroplasty (THA). In patients undergoing THA, prevalence of adverse SPM has been shown to be as high as 41%. Stiff lumbar spine, large posterior standing pelvic tilt and severe sagittal spinal deformity have been identified as risk factors for increased hip instability. Dislocation rates for dual mobility articulations have been reported to be 0% to 1.1%. The aim of this study was to determine the early survivorship from the Australian National Joint Replacement Registry (AOANJRR) of patients with adverse SPM who received a dual mobility articulation.

A multicentre study was performed using data from 229 patients undergoing primary THA, enrolled consecutively. All the patients who had one or more adverse spine or pelvic mobility parameters had a dual mobility articulation inserted at the time of their surgery. Average age was 76 (22 to 93) years and 63% were female. At a mean of 2.1 (1 – 3.3) years post-op, the AOANJRR was analysed for follow-up. Reasons for revision and types of revision were identified.

The AOANJRR reported two revisions. One due to infection and the second due to femoral component loosening. No revisions for dislocation were reported. One patient died with the prosthesis in situ. Kaplan Meier survival was 99.3% (CI 98.3% − 100%) at 2 years.

DM bearings reduce the risk of dislocation of primary THA in patients with adverse spine and pelvic mobility.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 6 - 6
1 Feb 2021
Madurawe C Vigdorchik J Lee G Jones T Dennis D Austin M Pierrepont J Huddleston J
Full Access

Introduction

Excessive standing posterior pelvic tilt (PT), lumbar spine stiffness, low pelvic Incidence (PI), and severe sagittal spinal deformity (SSD) have been linked to increased dislocation rates. We aimed to compare the prevalence of these 4 parameters in unstable and stable primary Total Hip Arthroplasty (THA) patients.

Methods

In this retrospective cohort study, 40 patients with instability following primary THA for osteoarthritis were referred for functional analysis. All patients received lateral X-rays in standing and flexed seated positions to assess functional pelvic tilt and lumbar lordosis (LL). Computed tomography scans were used to measure pelvic incidence and acetabular cup orientation. Literature thresholds for “at risk” spinopelvic parameters were standing pelvic tilt ≤ −10°, lumbar flexion (LLstand – LLseated) ≤ 20°, PI ≤ 41°, and sagittal spinal deformity (PI – LLstand mismatch) ≥ 10°. The prevalence of each risk factor in the dislocation cohort was calculated and compared to a previously published cohort of 4042 stable THA patients.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_10 | Pages 14 - 14
1 Oct 2020
Gu Y Madurawe C Kim W Pierrepont J Shimmin A Lee G
Full Access

Introduction

The prevalence of the various patterns of spinopelvic abnormalities that increase the risk for prosthetic impingement is unknown. While prior surgery or lumbar fusion are recognized as a risk factors for postoperative dislocation, many patients presenting for THA do not have obvious radiographic abnormalities. The purpose of this study is to determine the prevalence of large posterior pelvic tilt (PPT) when standing, stiff lumbar-spine (SLL) and spino-pelvic sagittal imbalance (SSI) in patients undergoing primary THA.

Methods

A consecutive series of 1592 patients (56% female) over 2 years underwent functional analysis of spinopelvic mobility using CT, standing, and flexed seated lateral radiographs as part of pre-operative THA planning. The average age was 65 (20–93). We investigated the prevalence of these 3 validated spinopelvic parameters known to increase the risk for impingent and correlated them to the patient's age and gender using Chi squared analysis. Finally, the risk of flexion and extension impingement was modeled for each patient at a default supine cup orientation (DSCO) of 40°/20° (±5°).


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 85 - 85
1 Feb 2020
Dennis D Pierrepont J Madurawe C Lee G Shimmin A
Full Access

Introduction

It is well accepted that larger heads provide more stability in total hip arthroplasty. This is due to an increase in jump height providing increased resistance to subluxation. However, other implant parameters also contribute to the bearing's stability. Specifically, the liner's rim design and the centre of rotation relative to the liner's face. Both these features contribute to define the Cup Articular Arc Angle (CAAA). The CAAA describes the degree of dysplasia of the acetabular liner, and plays an important role in defining the jump height.

The aim of this study was to determine the difference in jump height between bearing materials with a commonly used acetabular implant system.

Methods

From 3D models of the Trinity acetabular implant system (Corin, UK), the CAAA was measured in CAD software (SolidWorks, Dassault Systems, France) for the ceramic, poly and modular dual mobility (DM) liners, for cup sizes 46mm to 64mm. The most commonly used bearing size was used in the analysis of each cup size. For the ceramic and poly liners, a 36mm bearing was used for cups 50mm and above. For the 46mm and 48mm cups, a 32mm bearing was used. The DM liners were modelled with the largest head size possible. Using a published equation, the jump height was calculated for each of the three bearing materials and each cup size. Cup inclination and anteversion were kept constant.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 112 - 112
1 Feb 2020
Kreuzer S Madurawe C Pierrepont J Jones T
Full Access

Introduction

In total hip arthroplasty, correct sizing is critical for fixation and longevity of cementless components. Previously, three-dimensional CT templating has been shown to be more accurate than using 2D radiographs. The accuracy of the Optimized Positioning System (OPSTM) planning software has not been reported. The aim of this study was to measure the accuracy of the OPS planning software in predicting the implanted acetabular cup and femoral stem size when used with the direct anterior approach.

Method

Between October 2018 and March 2019, 95 patients received a bone preserving cementless MiniHip stem (Corin, UK). Sixty-three of these patients also received a cementless Trinity cup (Corin, UK). All patients were sent for OPSTM pre-operative planning, a patient-specific dynamic modelling software used to determine the optimal acetabular and femoral component size and positions. Average age was 57 (28 to 78) and 44% were female. All cases were performed using the direct anterior approach. The sizes of implants used were retrospectively compared to the planned OPSTM sizes.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 84 - 84
1 Feb 2020
Dennis D Pierrepont J Madurawe C Friedmann J Bare J McMahon S Shimmin A
Full Access

Introduction

Femoral component loosening is one of the most common failure modes in cementless total hip arthroplasty (THA). Patient age, weight, gender, osteopenia, stem design and Dorr-C bone have all been proposed as risk factors for poor fixation and subsequent stem subsidence and poor outcome. With the increased popularity of CT-based assistive technologies in THA, (Stryker MAKO and Corin OPSTM), we sought to develop a technique to predicted femoral stem fixation using pre-operative CT.

Methods

Fourteen patients requiring THA were randomly selected from a previous study investigating component alignment. Mean age was 64 (53 to 76), and 57% were female. All patients received pre-operative CT for 3D dynamic templating (OPSTM), and a TriFit stem and Trinity cup (Corin, UK) implanted through a posterior approach. Post-operatively, patients received an immediate CT and AP x-ray prior to leaving the hospital, and a 1-year follow-up x-ray. On both the immediate post-op x-ray and 1-year follow-up x-ray, the known cup diameter was used to scale the image. On both images, the distance between the most superior point of the greater trochanter and the shoulder of the stem was measured. The difference was recorded as stem subsidence. Subsidence greater than 4mm was deemed clinically relevant. The post-operative CT was used to determine the precise three-dimensional placement of the stem immediately after surgery by registering the known 3D implant geometry to the CT. For each patient, the achieved stem position from post-op CT was then virtually implanted back into the pre-operative OPSTM planning software. The software provides a colour map of the bone density at the stem/bone interface using the Hounsfield Units (HU) of each pixel of the CT [Fig. 1]. Blue represents low density bone transitioning through to green and then red (most dense).


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 24 - 24
1 Feb 2020
Walter L Madurawe C Gu Y Pierrepont J
Full Access

The functional pelvic tilt when standing and sitting forward of 7402 cases on the OPS, Optimized Ortho, Australia Data Base were reviewed. All patients had undergone lateral radiographs when standing simulating extension of the hip, and sitting forward when the hip is near full flexion. Pelvic tilt was measured as the angle of the Anterior Pelvic Plane to the vertical Sagittal Plane, rotation anteriorly being given a positive value. Pelvises that had rotated more than 13 degrees anteriorly (+ve) when sitting forward or posteriorly (-ve) when standing were considered to place the hip at increased risk of dislocation or edge loading when flexed or extending respectively. This degree of rotation has the effect of changing the acetabular version by approximately100. Most safe zones that have been described have given a range of anteversion of 200 as safe. A change of 100 would potentially place the acetabular orientation outside this range. Further, clinical studies have supported this concept. All lateral radiographs were reviewed to confirm that 281 had undergone instrumented spinal fusion at some level between T12 and S1. There was a large variability in the number and the levels arthrodesed. The range of pelvic mobility in the non-arthrodesed group in extension was −370 to 310 (mean −0.90, Standard deviation 7.49) and in flexed position was −700 to 490 (mean −1.90, Standard deviation 14.01). For the group with any fusion the range of pelvic tilt in extension was −310 to 220 (mean −40, Standard deviation 8.21) and flexed −320 to 460 (mean 4.40, Standard deviation 13.79). Of the 7121 cases without instrumented fusion, 15.5% were considered to be at risk when in flexion and 6.1% when extended. The risk for those with any fusion was approximately doubled in both flexion and extension. Further, those with extensive arthrodesis from T12 to S1 had a range of pelvic tilts similar to the non-fused group, although they had a significantly higher percentage of cases in the ‘at risk’ zones. The proportion of the cases in the ‘at risk’ zones decreased progressively as the arthrodesed levels moved from L5/S1 to the upper lumbar spine, and with decreasing number of levels fused.

Conclusion

Spinal fusion is not just one group as there are many combinations of different levels fused. Patients with instrumented spinal fusions do have a proportionately high risk of failure of their THR than the majority of cases with no instrumentation, though the risk varies significantly with the number of levels and actual levels arthrodesed. Further approximately 21% of cases with no spinal fusion have functional pelvic movements that would potentially place them ‘at risk’ of edge loading or dislocation.

For any figures or tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 114 - 114
1 Feb 2020
Slotkin E Pierrepont J Smith E Madurawe C Steele B Ricketts S Solomon M
Full Access

Introduction

The direct anterior approach (DAA) for total hip arthroplasty continues to gain popularity. Consequently, more procedures are being performed with the patient supine. The approach often utilizes a special leg positioner to assist with femoral exposure. Although the supine position may seem to allow for a more reproducible pelvic position at the time of cup implantation, there is limited evidence as to the effects on pelvic tilt with such leg positioners. Furthermore, the DAA has led to increased popularity of specific softwares, ie. Radlink or JointPoint, that facilitate the intra-op analysis of component position from fluoroscopy images.

The aim of this study was to assess the difference in cup orientation measurements between intra-op fluoroscopy and post-op CT.

Methods

A consecutive series of 48 DAA THAs were performed by a single surgeon in June/July 2018. All patients received OPSTM pre-operative planning (Corin, UK), and the cases were performed with the patient supine on the operating table with the PURIST leg positioning system (IOT, Texas, USA). To account for variation in pelvic tilt on the table, a fluoroscopy image of the hemi-pelvis was taken prior to cup impaction, and the c-arm rotated to match the shape of the obturator foramen on the supine AP Xray. The final cup was then imaged using fluoroscopy, and the radiographic cup orientation measured manually using Radlink GPS software (Radlink, California, USA). Post-operatively, each patient received a low dose CT scan to measure the radiographic cup orientation in reference to the supine coronal plane.