header advert
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 80 - 80
1 Feb 2020
Robotti P Luchin V Galeotti F Molinari A
Full Access

AM Open Cell porous Ti Structures were investigated for compressive strength, morphology (i.e. pore size, struts size and porosity), and wear resistance with the aim to improve design capability at support of implant manufacturing.

Specimens were manufactured in Ti6Al4V using a SLM machine. Struts sizes had nominal diameters of 200µm or 100µm, pores had nominal diameters of 700µm, 1000µm or 1500µm. These dimensions were applied to three different open-cell geometrical configurations: one with unit-cells based on a regular cubic arrangement (Regular), one with a deformed cubic arrangement (Irregular), and one based on a fully random arrangement (Fully Random).

Morphological analysis was performed by image analysis applied onto optical and SEM acquired pictures. The analyses estimated the maximum and minimum Feret pores diameter, and the latter was used as one of the key parameters to describe the interconnected network of pores intended for bone colonization.

Outcome revealed the systematic oversizing of the actual struts diameter Vs designed diameter; by opposite min. Feret diameters of the pores resulted significantly smaller than nominal pore diameters, thus better fitting within the range of pores dimension acknowledged to favor the osseointegration. Consequently, the actual total porosity is also reduced.

Many technologic factors are responsible for the morphologic differences design vs actual, among these the influence of melting pool dimension, the struts orientation during building and the layer thickness have a significant impact.

Mechanical compression was performed on porous cylinder samples. Test revealed the Yield Strength and Stiffness are highly sensitive to the actual porosity. Deformation behavior follows densification phenomenon at lower porosity, whereas at higher porosity the Gibson-Ashby model fits for most of the structure tested. The relationship among load direction, struts alignment and the collapse behavior of the unit cell geometries are discussed. Stiffness of the porous structure is evaluated in both quasistatic and cyclic compression.

Wear was investigated according to Taber test method. The abrasion resistance is measured by scratching a ceramic wheel against the different AM porous structures along a circular path. Metal debris eventually loss were quantified by gravimetric analysis at different number of cycles. Correlation among AM porous structure geometry, porosity and wear loss is discussed. All the tested structures showed a debris loss within the limit suggested by FDA for the porous coating in contact with the bone tissue.

The actual AM porous Titanium unit cell geometry and features are a key design input. In combination with all the other design factors of a device they may result helpful in address the stress shielding and prevent metal debris release issues. The study underlines the importance of the research activity in AM to support Design for Additive Manufacturing (DFAM) capability.

For any figures or tables, please contact authors directly.