header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 66 - 66
1 Dec 2017
Sabesan V Petersen-Fitts GR Lombardo DJ Liou W
Full Access

Manufacturers of reverse shoulder arthroplasty (RSA) implants have recently designed innovative implants to optimise performance in rotator cuff deficient shoulders. These advancements are not without tradeoff and can have negative biomechanical effects. The objective of this study was to develop an integrated FEA kinematic model to compare the muscle forces and joint reaction force (JRF) of 3 different RSA designs.

A kinematic model of a normal shoulder joint was adapted from the Delft model and integrated with the OpenSim shoulder model. Static optimisations then allowed for calculation of the individual muscle forces, moment arms and JRF relative to net joint moments. Three dimensional computer models of humeral lateralised design (HLD), glenoid lateral design (GLD), and Grammont design (GD) RSA were integrated and parametric studies were performed.

Overall there were decreases in deltoid and rotator cuff muscle forces for all 3 RSA designs. These decreases were greatest in the middle deltoid of the HLD model for abduction and flexion and in the rotator cuff muscles under both internal and external rotation. The joint reactive forces in abduction and flexion decreased similarly for all RSA designs compared to the normal shoulder model, with the greatest decrease seen in the HLD model.

These findings demonstrate that the design characteristics implicit in these modified RSA prostheses result in kinematic differences most prominently seen in the deltoid muscle and overall joint reactive forces. Further research utilising this novel integrated model can help guide continued optimisation of RSA design and clinical outcomes.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 13 - 13
1 May 2016
Lombardo D Yang Y Liou W Frank C Sabesan V
Full Access

Introduction

Reverse Shoulder Arthroplasty (RSA) improves the mechanics of rotator cuff deficient shoulders. To optimize functional outcomes and minimize failures of the RSA manufacturers have recently made innovative design modifications with lateralized components. However, these innovations have their own set of biomechanical trade-offs, such as increased shear forces along the glenoid bone interface. The objective of this study was to develop an efficient musculoskeletal model to evaluate and compare both the muscle forces and joint reactive force of a normal shoulder to those implanted with varied RSA implant designs. We believe these findings will provide valuable insight into possible advantages or shortcomings of this new RSA design.

Methods

A kinematic model of a normal shoulder joint was adapted from publically available musculoskeletal modeling software. Static optimizations then allowed for calculation of the individual muscle forces, moment arms and joint reactive forces relative to net joint moments. An accurate 3D computer models of humeral lateralized design (HLD) (Equinoxe, Exactech, Gainesville FL, USA), glenoid lateral design (GLD) (Encore, DJO Global, Vista CA, USA), and Grammont design (GD) (Aequalis, Tornier, Amsterdam, NV) reverse shoulder prostheses was also developed and parametric studies were performed based on the numerical simulation platform.