header advert
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 94 - 94
2 Jan 2024
Lin Y Lian W Chen Y Jahr H Wang F
Full Access

Obesity is correlated with the development of osteoporotic diseases. Gut microbiota-derived metabolite trimethylamine-n-oxide (TMAO) accelerates obesity-mediated tissue deterioration. This study was aimed to investigate what role TMAO may play in osteoporosis development during obesity.

Mice were fed with high-fat diet (HFD; 60 kcal% fat) or chow diet (CD; 10 kcal% fat) or 0.2% TMAO in drinking water for 6 months. Body adiposis and bone microstructure were investigated using μCT imaging. Gut microbiome and serum metabolome were characterized using 16S rRNA sequencing and liquid chromatography-tandem mass spectrometry. Osteogenic differentiation of bone-marrow mesenchymal cells was quantified using RT-PCR and von Kossa staining. Cellular senescence was evaluated by key senescence markers p16, p21, p53, and senescence association β-galactosidase staining.

HFD-fed mice developed hyperglycemia, body adiposis and osteoporosis signs, including low bone mineral density, sparse trabecular microarchitecture, and decreased biomechanical strength. HFD consumption induced gut microbiota dysbiosis, which revealed a high Firmicutes/Bacteroidetes ratio and decreased α-diversity and abundances of beneficial microorganisms Akkermansiaceae, Lactobacillaceae, and Bifidobacteriaceae. Serum metabolome uncovered increased serum L-carnitine and TMAO levels in HFD-fed mice. Of note, transplantation of fecal microbiota from CD-fed mice compromised HFD consumption-induced TMAO overproduction and attenuated loss in bone mass, trabecular microstructure, and bone formation rate. TMAO treatment inhibited trabecular and cortical bone mass and biomechanical characteristics; and repressed osteogenic differentiation capacity of bone-marrow mesenchymal cells. Mechanistically, TMAO accelerated mitochondrial dysfunction and senescence program, interrupted mineralized matrix production in osteoblasts.

Gut microbial metabolite TMAO induced osteoblast dysfunction, accelerating the development of obesity-induced skeletal deterioration. This study, for the first time, conveys a productive insight into the catabolic role of gut microflora metabolite TMAO in regulating osteoblast activity and bone tissue integrity during obesity.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 76 - 76
4 Apr 2023
LU X BAI S LIN Y YAN L LI L WANG M JIANG Z WANG H YANG B YANG Z WANG Y FENG L JIANG X PONOMAREV E LEE W LIN S KO H LI G
Full Access

Based on Ilizarov's law of tension-stress principle, distraction histogenesis technique has been widely applied in orthopaedic surgery for decades. Derived from this technique, cranial bone transport technique was mainly used for treating cranial deformities and calvarial defects. Recent studies reported that there are dense short vascular connections between skull marrow and meninges for immune cells trafficking, highlighting complex and tight association between skull and brain. Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common cause of dementia without effective therapy. Meningeal lymphatics have been recognized as an important mediator in neurological diseases. The augmentation of meningeal lymphatic drainage might be a promising therapeutic target for AD. Our proof-of-concept study has indicated that cranial bone transport can promote ischemic stroke recovery via modulating meningeal lymphatic drainage function, providing a rationale for treating AD using cranial bone maneuver (CBM). This study aims to investigate the effects of CBM on AD and to further explore the potential mechanisms.

Transgenic 5xFAD mice model was used in this study. After osteotomy, a bone flap was used to perform CBM without damaging the dura. Open filed test, novel object recognition test and Barn's maze test were used to evaluate neurological functions of 5xFAD mice after CBM treatment. Congo red and immunofluorescence staining were used to evaluate amyloid depositions and Aβ plaques in different brain regions. Lymphangiogenesis and the level of VEGF-C were examined after CBM treatment. OVA-A647 was intra-cisterna-magna injected to evaluate meningeal lymphatic drainage function after CBM treatment.

CBM significantly improved memory functions and reduced amyloid depositions and Aβ plaques in the hippocampus of 5xFAD mice. A significant increase of meningeal lymphatic vessels in superior sagittal sinus and transverse sinus, and the upregulation of VEGF-C in meninges were observed in 5xFAD mice treated with CBM. Moreover, CBM remarkably enhanced meningeal lymphatic drainage function in 5xFAD mice (n=5-16 mice/group for all studies).

CBM may promote meningeal lymphangiogenesis and lymphatic drainage function through VEGF-C-VEGFR3 pathway, and further reduce amyloid depositions and Aβ plaques and alleviate memory deficits in AD.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 56 - 56
4 Apr 2023
Sun Y Zheng H Kong D Yin M Chen J Lin Y Ma X Tian Y Wang Y
Full Access

Using deep learning and image processing technology, a standardized automatic quantitative analysis systerm of lumbar disc degeneration based on T2MRI is proposed to help doctors evaluate the prognosis of intervertebral disc (IVD) degeneration.

A semantic segmentation network BianqueNet with self-attention mechanism skip connection module and deep feature extraction module is proposed to achieve high-precision segmentation of intervertebral disc related areas. A quantitative method is proposed to calculate the signal intensity difference (SI) in IVD, average disc height (DH), disc height index (DHI), and disc height-to-diameter ratio (DHR). According to the correlation analysis results of the degeneration characteristic parameters of IVDs, 1051 MRI images from four hospitals were collected to establish the quantitative ranges for these IVD parameters in larger population around China.

The average dice coefficients of the proposed segmentation network for vertebral bodies and intervertebral discs are 97.04% and 94.76%, respectively. The designed parameters of intervertebral disc degeneration have a significant negative correlation with the Modified Pfirrmann Grade. This procedure is suitable for different MRI centers and different resolution of lumbar spine T2MRI (ICC=.874~.958). Among them, the standard of intervertebral disc signal intensity degeneration has excellent reliability according to the modified Pfirrmann Grade (macroF1=90.63%~92.02%).

we developed a fully automated deep learning-based lumbar spine segmentation network, which demonstrated strong versatility and high reliability to assist residents on IVD degeneration grading by means of IVD degeneration quantitation.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 49 - 49
1 Mar 2013
Lin Y Hall A Smith I Salter D Simpson H
Full Access

The cartilage diseases such as osteoarthritis and chondral injuries are considered irreversible and the result of recent treatments remains not optimal. One of the reasons is due to the poor understanding of chondrocyte behaviours. To understand more about cartilage, we designed a series of novel experiments. First, a total joint of bovine metatarsophalanges was isolated as our novel model. We chose it because the configuration and the healing potential were similar to human, and many variables of large animal studies could be controlled in laboratory. The model not only provided a good ex vivo platform for cartilage researches but also connected in vitro cellular studies and in vivo animal studies. To mimic joint movement a special driving machine was designed. To characterise the novel model viabilities of chondrocytes and contents of sulphated glycosaminoglycan (GAGs) in extracellular matrixes were measured every seven days. The preliminary results revealed the viabilities of chondrocytes remained above 80% alive in the middle zone after four-weeks culture. The GAGs contents decreased after this culturing period. The experiments still carry on going to compare the static and dynamic models which joint movement could be a determinative factor to the viability of chondrocytes. Cellular treatment is the recent mainstream for cartilage diseases. If advanced knowledge in chondrocyte behaviours could be obtained from this model, development of optimal treatment will be possible in the future.