header advert
Results 1 - 10 of 10
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 10 - 10
2 Jan 2024
Tian X Vater C Raina DB Findeisen L Matuszewski L Tägil M Lidgren L Schaser K Disch A Zwingenberger S
Full Access

Although bone morphogenetic protein 2 (BMP-2) has been FDA-approved for spinal fusion for decades, its disadvantages of promoting osteoclast-based bone resorption and suboptimal carrier (absorbable collagen sponge) leading to premature release of the protein limit its clinical applications. Our recent study showed an excellent effect on bone regeneration when BMP-2 and zoledronic acid (ZA) were co-delivered based on a calcium sulphate/hydroxyapatite (CaS/HA) scaffold in a rat critical-size femoral defect model. Therefore, the aim of this study was to evaluate whether local application of BMP-2 and ZA released from a CaS/HA scaffold is favorable for spinal fusion. We hypothesized that CaS/HA mediated controlled co-delivery of rhBMP-2 and ZA could show an improved effect in spinal fusion over BMP-2 alone. 120, 8-week-old male Wistar rats (protocol no. 25-5131/474/38) were randomly divided into six groups in this study (CaS/HA, CaS/HA + BMP-2, CaS/HA + systemic ZA, CaS/HA + local ZA, CaS/HA + BMP-2 + systemic ZA, CaS/HA + BMP-2 + local ZA). A posterolateral spinal fusion at L4 to L5 was performed bilaterally by implanting group-dependent scaffolds. At 3 weeks and 6 weeks, 10 animals per group were euthanized for µCT, histological staining, or mechanical testing. µCT and histological results showed that the CaS/HA + BMP-2 + local ZA group significantly promoted bone regeneration than other treated groups. Biomechanical testing showed breaking force in CaS/HA + BMP + local ZA group was significantly higher than other groups at 6 weeks. In conclusion, the CaS/HA-based biomaterial functionalized with bioactive molecules rhBMP-2 and ZA enhanced bone formation and concomitant spinal fusion outcome

Acknowledgements: Many thanks to Ulrike Heide, Anna-Maria Placht (assistance with surgeries) as well as Suzanne Manthey & Annett Wenke (histology).


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 92 - 92
17 Apr 2023
Raina D Mrkonjic F Tägil M Lidgren L
Full Access

A number of techniques have been developed to improve the immediate mechanical anchorage of implants for enhancing implant longevity. This issue becomes even more relevant in patients with osteoporosis who have fragile bone. We have previously shown that a dynamic hip screw (DHS) can be augmented with a calcium sulphate/hydroxyapatite (CaS/HA) based injectable biomaterial to increase the immediate mechanical anchorage of the DHS system to saw bones with a 400% increase in peak extraction force compared to un-augmented DHS. The results were also at par with bone cement (PMMA). The aim of this study was to investigate the effect of CaS/HA augmentation on the integration of a different fracture fixation device (gamma nail lag-screw) with osteoporotic saw bones.

Osteoporotic saw bones (bone volume fraction = 15%) were instrumented with a gamma nail without augmentation (n=8) or augmented (n=8) with a CaS/HA biomaterial (Cerament BVF, Bonesupport AB, Sweden) using a newly developed augmentation method described earlier. The lag-screws from both groups were then pulled out at a displacement rate of 0.5 mm/s until failure. Peak extraction force was recorded for each specimen along with photographs of the screws post-extraction. A non-parametric t-test was used to compare the two groups.

CaS/HA augmentation of the lag-screw led to a 650% increase in the peak extraction force compared with the controls (p<0.01). Photographs of the augmented samples shows failure of the saw-bones further away from the implant-bone interface indicating a protective effect of the CaS/HA material.

We present a novel method to enhance the immediate mechanical anchorage of a lag-screw to osteoporotic bone and it is also envisaged that CaS/HA augmentation combined with systemic bisphosphonate treatment can lead to new bone formation and aid in the reduction of implant failures and re-operations.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 55 - 55
11 Apr 2023
Raina D Markeviciute V Arvidsson L Törnquist E Stravinskas M Kok J Jacobson I Liu Y Tengattini A Sezgin E Vater C Zwingenberger S Isaksson H Tägil M Tarasevicius S Lidgren L
Full Access

Majority of osteoporosis related fractures are treated surgically using metallic fixation devices. Anchorage of fixation devices is sometimes challenging due to poor osteoporotic bone quality that can lead to failure of the fracture fixation.

Using a rat osteoporosis model, we employed neutron tomography and histology to study the biological effects of implant augmentation using an isothermally setting calcium sulphate/hydroxyapatite (CaS/HA) biomaterial with synthetic HA particles as recruiting moiety for systemically administered bisphosphonates. Using an osteoporotic sawbones model, we then provide a standardized method for the delivery of the CaS/HA biomaterial at the bone-implant interface for improved mechanical anchorage of a lag-screw commonly used for hip fracture fixation. As a proof-of-concept, the method was then verified in donated femoral heads and in patients with osteoporosis undergoing hip fracture fixation.

We show that placing HA particles around a stainless-steel screw in-vivo, systemically administered bisphosphonates could be targeted towards the implant, yielding significantly higher peri-implant bone formation compared to un-augmented controls. In the sawbones model, CaS/HA based lag-screw augmentation led to significant increase (up to 4 times) in peak extraction force with CaS/HA performing at par with PMMA. Micro-CT imaging of the CaS/HA augmented lag-screws in cadaver femoral heads verified that the entire length of the lag-screw threads and the surrounding bone was covered with the CaS/HA material. X-ray images from fracture fixation surgery indicated that the CaS/HA material could be applied at the lag-screw-bone interface without exerting any additional pressure or risk of venous vascular leakage.: We present a new method for augmentation of lag-screws in fragile bone. It is envisaged that this methodcould potentially reduce the risk of fracture fixation failure especially when HA seeking “bone active” drugs are used systemically.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 66 - 66
11 Apr 2023
Sebastian S Collin M Liu Y Raina D Tägil M Lidgren L
Full Access

There is a lack of carriers for the local delivery of rifampicin (RIF), one of the cornerstone second defence antibiotic for Staphylococcus aureus deep bone infections (DBIs). RIF is also associated with systemic side effects, and known for causing rapid development of antibiotic resistance when given as monotherapy. We evaluated a clinically usedbi-phasic calcium sulphate/hydroxyapatite (CaS/HA) biomaterial as a carrier for dual delivery of RIF with vancomycin (VAN) or gentamicin (GEN). It was hypothesized that this combined approach could provide improved biofilm eradication and prevent the development of RIF resistance.

Methods: 1) Biofilm eradication: Using a modified crystal violet staining biofilm quantification method, the antibiotics released at different time points (Day 1, 3, 7, 14, 21, 28 and 35) from the hemispherical pellets of CaS/HA(500 mg)-VAN (24.57 mg) / GEN (10.35 mg) composites with or without RIF (8.11 mg) were tested for their ability to disrupt the preformed 48-h old biofilms of S. aureus ATCC 25923, and S. aureus clinical strain P-3 in 96-well microtitre plate. For each tested group of antibiotic fractions, five separate wells were used (n=5). 2) Testing for resistance development: Similar to the method mentioned above the 48-h biofilm embeded bacteria exposed to antibiotic fractions from different time points continuously for 7 days. The biofilms remained were then tested for RIF resistant strains of bacteria.

Overall, there was clear antibiofilm biofilm activity observed with CaS/HA-VAN/GEN+RIF combinations compared with CaS/HA-VAN/GEN alone. The S. aureus strains developed resistance to RIF when biofilms were subjected to CaS/HA-RIF alone but not with combinations of CaS/HA-VAN/GEN+RIF

Enhanced antibiofilm effects without development of RIF resistance indicates that biphasic CaS/HA loaded with VAN or GEN could be used as a carrier for RIF for additional local delivery in clinically demanding DBIs.

Acknowledgement: We deeply acknowledge the Royal Fysiographic Society of Lund, Landshövding Per Westlings Minnesfond and the Stina and Gunnar Wiberg fond for financial support.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 100 - 100
1 Mar 2021
Raina D Liu Y Isaksson H Tägil M Lidgren L
Full Access

Targeted delivery of drugs is a major challenge in diseases such as infections and tumors. The aim of this study was to demonstrate that hydroxyapatite (HA) particles can act as a recruiting moiety for various bioactive molecules and as a proof-of-concept demonstrate that the affinity of drugs to hydroxyapatite can exert a biological effect. A bisphosphonate, zoledronic acid (ZA), was used as a model drug. Experiment 1 (ZA seeks HA): Calcium sulphate (CaS)/hydroxyapatite (HA) biomaterial pellets (diameter¸=5 mm, height=2 mm) were implanted in the abdominal muscle pouch of rats. After 2-weeks of implantation, a sub-cutaneous injection of 14C-ZA (0.1 mg/kg) was given. 24 h later, the animals were sacrificed and the uptake of ZA determined in the pellets using scintillation counting. Experiment 2 (Systemically administered ZA seeks HA and exerts a biological effect): A fenestrated implant was filled with the CaS/HA biomaterial and inserted in the proximal tibia of rats. 2-weeks post-op, a subcutaneous injection of ZA (0.1 mg/kg) was given. Animals were sacrificed at 6-weeks post-op. Empty implant was used as a control. Peri-implant bone formation was evaluated using different techniques such as micro-CT, mechanical testing and histology. Welch's t-test was used for mechanical testing and Mann-Whitney U test for micro-CT data analysis. Experiment 1: Uptake of radioactive ZA in the CaS/HA biomaterial was confirmed. Almost no ZA was present in the surrounding muscle. These results show high specific binding between systemically administered ZA and synthetic particulate HA. Experiment 2: Significantly higher peri-implant bone was measured using micro-CT in the group wherein the implant contained the CaS/HA biomaterial and ZA was administered systemically (This study presents a method for biomodulating HA in situ by different bioactive molecules. The approach of implanting a biomaterial capable of recruiting systemically given drugs and thereby activate the material is novel and may present a possibility to treat bone infections or tumors.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 33 - 33
1 Nov 2018
Raina D Qayoom I Larsson D Zheng M Kumar A Isaksson H Lidgren L Tägil M
Full Access

Metaphyseal fracture healing is important in joint-adjacent fractures and appears to differ from diaphyseal healing. We recently found that a biomaterial delivering bone morphogenic protein-2 (BMP-2) and zoledronic acid (ZA) healed the metaphyseal bone in a tibial defect but failed closing the cortical defect. In this study we added a BMP-2 soaked collagen membrane to study cortical healing from the muscle tissue surrounding the bone. We used SD rats and a 4.5 mm metaphyseal circular tibial defect. In group 1 (G1), a porous gelatin-calcium sulphate-hydroxyapatite (GCH) biomaterial containing rhBMP-2 and ZA was used to fill the defect (GCH+5 μg BMP-2+10 μg ZA). In group 2 (G2), we used a collagen membrane (2 μg BMP-2) to cover the GCH filled defect (GCH+3μg BMP+10 μg ZA). Group 3 (G3) was an empty control. Animals were sacrificed after 8-weeks and bone regeneration was evaluated with micro-CT and histology. In both G1 (P<0.001) and G2 (p<0.001) a significantly higher mineralized volume was found in the defect compared to empty G3. In G2 higher mineralized volume was found in the cortical region compared to both G1 (p<0.01) and G3 (p<0.001) as seen via micro-CT. Histologically, G1 and G2 showed islands of trabecular bone in the defect peripherally but only G2 showed cortical healing. G3 was empty in the middle but showed healed cortex. In conclusion, GCH can be used to deliver BMP-2 and ZA to promote metaphyseal bone growth. A membrane (CM) doped with low dose BMP-2 improved cortical regeneration.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 46 - 46
1 Apr 2018
Raina DB Isaksson H Tägil M Lidgren L
Full Access

Background

The doses of local rhBMP-2 in commercially available materials are high with known drawbacks such as inflammation and premature bone resorption. The latter can be prevented by adding bisphosphonates like zoledronic acid (ZA) but systemic ZA has side effects and patient adherence to treatment is low. In a recent study, we have shown that local co-delivery of rhBMP-2 and ZA via a calcium sulphate/hydroxyapatite (CS-HA) biomaterial can be used to regenerate both cortical and trabecular bone in a rat model of metaphyseal bone defect. Even low doses of local ZA in the biomaterial showed promising results and increased bone formation within the defect compared to the controls. A step before clinical translation of the local treatment regimen is to evaluate the in-vivo release kinetics of these additives and thus in this study, we aimed to investigate the in-vivo pharmacokinetics of rhBMP-2 and ZA from the CS-HA biomaterial in a rat abdominal muscle pouch model over a period of 4-weeks.

Methods

In-vivo release kinetics of 125I labeled rhBMP-2 and 14C labeled ZA was performed using an abdominal muscle pouch model in rats (n=6). Both rhBMP-2 and ZA were labeled commercially with a radiochemical purity of >95%. The detection of 125I -rhBMP-2 release was performed by implanting pellets of the CS-HA biomaterial containing 125I -rhBMP-2 and ZA and the same animals followed over a period of 4-weeks (day 1, 3, 7, 14, 21& 28) using SPECT imaging. Similarly, the 14C-ZA was detected by implanting CS-HA pellets containing rhBMP-2 and 14C-ZA. Release was detected via scintillation counting and at each time point (Day 1, 7, 14& 28) 6-animals were sacrificed.


Bone & Joint Research
Vol. 5, Issue 10 | Pages 500 - 511
1 Oct 2016
Raina DB Gupta A Petersen MM Hettwer W McNally M Tägil M Zheng M Kumar A Lidgren L

Objectives

We have observed clinical cases where bone is formed in the overlaying muscle covering surgically created bone defects treated with a hydroxyapatite/calcium sulphate biomaterial. Our objective was to investigate the osteoinductive potential of the biomaterial and to determine if growth factors secreted from local bone cells induce osteoblastic differentiation of muscle cells.

Materials and Methods

We seeded mouse skeletal muscle cells C2C12 on the hydroxyapatite/calcium sulphate biomaterial and the phenotype of the cells was analysed. To mimic surgical conditions with leakage of extra cellular matrix (ECM) proteins and growth factors, we cultured rat bone cells ROS 17/2.8 in a bioreactor and harvested the secreted proteins. The secretome was added to rat muscle cells L6. The phenotype of the muscle cells after treatment with the media was assessed using immunostaining and light microscopy.


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 1 | Pages 120 - 125
1 Jan 2004
Nilsson M Wang J Wielanek L Tanner KE Lidgren L

An injectable material consisting of calcium sulphate mixed with hydroxyapatite was investigated as a possible alternative to autograft in the restoration of bone defects. The material was studied both in vitro in simulated body fluid (SBF) and in vivo when implanted in rat muscles and into the proximal tibiae of rabbits. Variation in the strength and weight of the material during ageing in SBF was measured. Tissue response, material resorption and bone ingrowth were studied in the animal models.

A good tissue response was observed in both the rat muscles and rabbit tibiae without inflammatory reactions or the presence of fibrous tissue. Ageing in SBF showed that during the first week carbonated hydroxyapatite precipitated on the surfaces of the material and this may enhance bone ingrowth.


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 6 | Pages 908 - 914
1 Aug 2002
Yuan X Ryd L Tanner KE Lidgren L

We present a new approach for the accurate reconstruction of three-dimensional skeletal positions using roentgen single-plane photogrammetric analysis (RSPA). This technique uses a minimum of three markers embedded in each segment which allow continuous, real-time, internal skeletal movement to be measured from single-plane images, provided that the precise distance between the markers is known.

A simulation study indicated that the error propagation in this approach is influenced by focus position, object position, the number of control points, the accuracy of the previous measurement of the distance between markers and the accuracy of image measurement. For reconstruction of normal movement of the knee with an input measurement error of sd = 0.02 mm, the rotational and translational differences between reconstructed and original movement were less than 0.27° and 0.9 mm, respectively.

Our results showed that the accuracy of RSPA is sufficient for the analysis of most movement of joints. This approach can be applied in combination with force measurements for dynamic studies of the musculoskeletal system.