header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 11 - 11
4 Apr 2023
O’Beirne A Pletikosa Z Cullen J Bassonga E Lee C Zheng M
Full Access

Nerve transfer is an emerging treatment to restore upper limb function in people with tetraplegia. The objective of this study is to examine if a flexible collage sheet (FCS) can act as epineurial-like substitute to promote nerve repair in nerve transfer.

A preclinical study using FCS was conducted in a rat model of sciatic nerve transection. A prospective case series study of nerve transfer was conducted in patients with C5-C8 tetraplegia who received nerve transfer to restore upper limb function. Motor function in the upper limb was assessed pre-treatment, and at 6-,12-, and 24-months post-treatment.

Macroscopic assessment in preclinical model showed nerve healing by FCS without encapsulation or adhesions. Microscopic examination revealed that a new, vascularised epineurium-like layer was observed at the FCS treatment sites, with no evidence of inflammatory reaction or nerve compression. Treatment with FCS resulted in well-organised nerve fibres with dense neurofilaments distal to the coaptation site. Axon counts performed proximal and distal to the coaptation site showed that 97% of proximal axon count of myelinated axons regenerated across the coaptation site after treatment with CND. In the proof of concept clinical study 17 nerve transfers were performed in five patients. Nerve transfers included procedures to restore triceps function (N=4), wrist/finger/thumb extension (N=6) and finger flexion (N=7). Functional motor recovery (MRC ≥3) was achieved in 76% and 88% of transfers at 12 and 24 months, respectively.

The preclinical study showed that FCS mimics epineurium and enable to repair nerve resembled to normal nerve tissue. Clinical study showed that patients received nerve transfer with FCS experienced consistent and early return of motor function in target muscles. These results provide proof of concept evidence that CND functions as an epineurial substitute and is promising for use in nerve transfer surgery.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 46 - 46
1 May 2017
Page P Lee C Rogers B
Full Access

Background

Fractures of the femoral neck occurring outside the capsule of the hip joint are assumed to have an intact blood supply and hence their conventional management is by fixation rather than arthroplasty. The dynamic hip screw and its variants have been used over many years to fix such fractures but have inherent vulnerabilities; they require an intact lateral femoral cortex, confer a relatively long moment arm to the redistribution of body weight and may cause a stress riser due to the plate with which they are fixed to the femur. Intramedullary devices for fixation of proximal femoral fractures have a shorter moment arm, can be distally locked with reduced perforation of the femoral cortex and are believed to be inherently more stable. For these reasons, a number of surgeons believe them to be superior to the DHS for all extracapsular fractures and their use is now widespread. In this study, we present the usage trends of both devices in extracapsular fractures over the last five years and set these results in the context of patient demographics.

Methods

Our departmental electronic patient management system was used to identify all patients undergoing surgery coded as either DHS or its variants or intramedullary fixation of hip fracture. The patients’ age, sex and American Society of Anaesthesiologists grading were recorded. Comparison between groups was made using appropriate tests in SPSS.