header advert
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 45 - 45
1 Mar 2017
Myers C Laz P Shelburne K Rullkoetter P
Full Access

Introduction

Alignment of the acetabular cup and femoral components directly affects hip joint loading and potential for impingement and dislocation following total hip arthroplasty (THA) [1]. Changes to the lines of action and moment generating capabilities of the muscles as a result of component position may influence overall patient function. The objectives of this study were to assess the effect of component placement on hip joint contact forces (JCFs) and muscle forces during a high demand step down task and to identify important alignment parameters using a probabilistic approach.

Methods

Three patients following THA (2 M: 28.3±2.8 BMI; 1 F: 25.7 BMI) performed lower extremity maximum isometric strength tests and a step down task as part of a larger IRB-approved study. Patient-specific musculoskeletal models were created by scaling a model with detailed hip musculature [2] to patient segment dimensions and mass. For each model, muscle maximum isometric strengths were optimized to minimize differences between model-predicted and measured preoperative maximum isometric joint torques at the hip and knee.

Baseline simulations used patient-specific models with corresponding measured kinematics and ground reaction forces to predict hip JCFs and muscle forces using static optimization. To assess the combined effects of stem and cup position and orientation, a 1000 trial Monte Carlo simulation was performed with input variability in each degree of freedom based on the ±1 SD range in component placement relative to native geometry reported by Tsai et al. [3] (Figure 1). Maximum confidence bounds (1–99%) were predicted for the hip JCF magnitude and muscle forces for three prime muscles involved in the task (gluteus medius, gluteus minimus and psoas). HJC confidence bounds were compared to Orthoload measurements from telemetric implants from 6 patients performing the step down task. Sensitivity of hip JCF and muscle force outputs was quantified by Pearson Product-Moment correlation between the input parameter and the value of each output averaged across four points in the cycle.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 10 - 10
1 Feb 2017
Ali A Mannen E Smoger L Haas B Laz P Rullkoetter P Shelburne K
Full Access

Introduction

Patellar resurfacing affects patellofemoral (PF) kinematics, contact mechanics, and loading on the patellar bone. Patients with total knee arthroplasty (TKA) often exhibit adaptations in movement patterns that may be linked to quadriceps deficiency and the mechanics of the reconstructed knee [1]. Previous comparisons of PF kinematics between dome and anatomic resurfacing have revealed differences in patellar sagittal plane flexion [2], but further investigation of PF joint mechanics is required to understand how these differences influence performance. The purpose of this study was to compare PF mechanics between medialized dome and medialized anatomic implants using subject-specific computational models.

Methods

A high-speed stereo radiography (HSSR) system was used to capture 3D sub-mm measurement of bone and implant motion [3]. HSSR images were collected for 10 TKA patients with Attune® (DePuy Synthes, Warsaw, IN) posterior-stabilized, rotating-platform components, 5 with medialized dome and 5 with medialized anatomic patellar components (3M/7F, 62.5±6.6 years, 2.2±0.6 years post-surgery, BMI: 26.2±3.5 kg/m2), performing two activities of daily living: knee extension and lunge (Figure 1). Relative motions were tracked using Autoscoper (Brown University, Providence, RI) for implant geometries obtained from the manufacturer. A statistical shape model was used to predict the patella and track motions [4].

Subject-specific finite element models of the experiment were developed for all subjects and activities [5]. The model included implant components, patella, quadriceps, patellar tendon, and medial and lateral PF ligaments (Figure 2a). While tibiofemoral kinematics were prescribed based on experimental data, the PF joint was unconstrained. A constant 1000N quadriceps load was distributed among four muscle groups. Soft tissue attachments and pre-strain in PF ligaments were calibrated to match experimental kinematics [5]. Model outputs included PF kinematics, patellar and contact force ratios, patellar tendon angle, and moment arm.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 465 - 465
1 Nov 2011
Petrella A Armstrong J Patel V Laz P Rullkoetter P
Full Access

Cross-shear has been shown to increase ultra-high molecular weight polyethylene (UHMWPE) wear in pin-on-disk, total knee, total hip, and spinal disc replacement testing. Computer modelling of implant wear holds promise for improving efficiency in the development of new implant designs, but it is desirable to accurately account for the effects of cross-shear in the computational simulation. Several studies have sought to propose a quantitative metric for cross-shear in multidirectional sliding and to correlate average cross-shear intensity with apparent wear rate measured in experiments. The apparent wear rate accounts for the total volume loss from all points on the UHMWPE surface. In principle, if the cross-shear metric correlates with experimental wear rates, it is then possible to predict an estimated wear rate for any arbitrary set of kinematic inputs. UHMWPE wear may then be simulated numerically with some form of Archard’s law.

One limitation of the above approach is that counter-face kinematics are homogenized by the use of a spatially and temporally averaged apparent wear rate. In a sliding contact interface of a joint implant in vivo, the intensity of cross-shear wear may vary with time and location on the surface. To address this variation we have proposed a novel cross-shear metric (x*) and developed a modified form of Archard’s law that is capable to differentiate between unidirectional and multidirectional sliding wear. The wear model and x* have been implemented in an explicit finite element framework (ABAQUS) that is capable of quantifying wear from any number of wear surfaces (e.g., front side, backside, post) with completely general geometry and loading conditions.

Preliminary validation of x* and the wear model have been performed by comparison with data from the open literature. Cross-shear metric x* is easy to compute, exhibits invariance to the choice of kinematic reference frame, and is able to reliably distinguish between similarly shaped sliding paths of different lengths – all improvements compared to cross-shear metrics described elsewhere. The wear model that incorporates x* has shown good agreement with pin-on-disk and cervical disc replacement wear results previously reported. Ongoing research focuses on demonstrating similar validity of the model for cross-shear wear in hip and knee replacements.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 413 - 414
1 Nov 2011
Dennis D Kim R Johnson D Springer B Fehring T Rullkoetter P Laz P Baldwin M
Full Access

Introduction: Patellar crepitus (PC) has been reported in 13% of cruciatesubstituting total knee arthroplasty (TKA) patients resulting from synovial tissue impingement within the femoral component intercondylar box (IB). Patient factors, component design, and technical errors have been implicated in PC. We compared primary TKA patients with PC requiring surgery against matched controls to identify significant variables.

Methods: The databases of 2 institutions were reviewed to identify patients requiring surgery for PC. A control group matched for age, sex, and BMI was identified.

Patient charts and radiographs were reviewed. Statistical analysis was performed.

Significant variables associated with patient anatomy, implant size and alignment were subsequently investigated in a computational model to evaluate tendofemoral contact.

Results: Between 2002 and 2008, over 4000 primary TKAs were performed using the Press Fit Condylar Sigma (DePuy, Warsaw, Indiana) TKA. Of these, 59 knees developed PC requiring surgery. The mean time to presentation was 10.9 months. The incidence of PC correlated with greater number of previous surgeries (1.18 vs. 0.44, p= 0.002), decreased patellar button size (35.7 vs. 37.1mm, p=0.003), shorter patellar tendon length (54.5 vs. 57.9mm, p=0.01), and increase in posterior femoral condylar offset (1.27mm vs. 0.17mm, p=0.022). Using a patellar component of 32 or 35mm significantly increased the risk of PC compared to the use of a 38 or 41mm component (p< 0.01, RR=1.61, OR 2.63). Modeling results demonstrated decreased patellar tendon length created increased tendofemoral contact near the IB, while larger buttons increased separation between the tendon and the box edge.

Conclusion: Shortened patellar tendon length and use of smaller patellar components may expose the quadriceps tendon to increased irritation as it traverses across the femoral component IB. Increasing posterior femoral offset may increase quadriceps tendon tension, further risking synovial tissue impingement within the IB.