header advert
Results 1 - 2 of 2
Results per page:
Bone & Joint Open
Vol. 1, Issue 3 | Pages 41 - 46
18 Mar 2020
Perry DC Arch B Appelbe D Francis P Spowart C Knight M

Introduction

There is widespread variation in the management of rare orthopaedic disease, in a large part owing to uncertainty. No individual surgeon or hospital is typically equipped to amass sufficient numbers of cases to draw robust conclusions from the information available to them. The programme of research will establish the British Orthopaedic Surgery Surveillance (BOSS) Study; a nationwide reporting structure for rare disease in orthopaedic surgery.

Methods

The BOSS Study is a series of nationwide observational cohort studies of pre-specified orthopaedic disease. All relevant hospitals treating the disease are invited to contribute anonymised case details. Data will be collected digitally through REDCap, with an additional bespoke software solution used to regularly confirm case ascertainment, prompt follow-up reminders and identify potential missing cases from external sources of information (i.e. national administrative data). With their consent, patients will be invited to enrich the data collected by supplementing anonymised case data with patient reported outcomes.

The study will primarily seek to calculate the incidence of the rare diseases under investigation, with 95% confidence intervals. Descriptive statistics will be used to describe the case mix, treatment variations and outcomes. Inferential statistical analysis may be used to analyze associations between presentation factors and outcomes. Types of analyses will be contingent on the disease under investigation.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 86 - 86
1 Apr 2018
Xu J Zeng L Knight M Shelton J
Full Access

Introduction

Wear debris and metal ions originating from metal on metal hip replacements have been widely shown to recruit and activate macrophages. These cells secrete chemokines and pro-inflammatory cytokines that lead to an adverse local tissue reaction (ALTR), frequently requiring early revision. The mechanism for this response is still poorly understood. It is well documented that cobalt gives rise to apoptosis, necrosis and reactive oxygen species generation. Additionally, cobalt stimulates T cell migration, although the effect on macrophage motility remains unknown. This study tests the hypothesis that cobalt ions and nanoparticles affect macrophage migration stimulating an ALTR.

Methods

This study used Co2+ ions (200µM) and cobalt nanoparticles (CoNPs, 100µM, 2–60nm diameter). PMA differentiation of the U937 cell line was used as macrophage-like cells. The effect of cobalt on macrophage migration was investigated by live cell imaging. After 12 hours of each treatment, timelapse images of 20 cells were collected over a 6 hour period with images captured every 5 min. Migration of individual cells was tracked in 2D using ImageJ software. The transwell migration assay was also applied to study the effect of cobalt on macrophage directional migration. U937 cells in serum free medium were added to the upper chamber of a 8µm pore size Transwell insert in the presence of cobalt, whilst the lower chamber was filled with medium plus 10% FBS. After 6 hours treatment, cells remaining on the membrane were fixed, stained with crystal violet and counted. Cellular F-actin and podosomes were visualized by labeling with TRITCconjugated phalloidin and anti-vinculin antibody after 12 hours of cobalt exposure (Co2+ and CoNPs).