header advert
Results 1 - 9 of 9
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 59 - 59
1 Jan 2016
Tamaki M Tomita T Miyamoto T Iwamoto K Ueda T Sugamoto K
Full Access

Introduction

The deformity in osteoarthritis (OA) of the knee has been evaluated mainly in the frontal plane two dimensional X-ray using femorotibial angle. Although the presence of underlying rotational deformity in the varus knee and coexisting hip abnormality in the valgus knee have been suggested, three dimensional (3D) deformities in the varus and valgus knee were still unknown. We evaluated the 3D deformities of the varus and valgus knee using 3D bone models.

Methods

Preoperative computed tomography (CT) scans of twenty seven OA knees (fifteen varus and twelve valgus) undergoing total knee arthroplasty were assessed in this study. CT scans of each patient's femur and tibia, with a 2 mm interval, obtained before surgery. We created the 3D digital model of the femur and tibia using visualization and modeling software developed in our institution. The femoral coordinate system was calculated by the 3D mechanical axis and clinical transepicondylar axis and the tibial coordinate system was calculated by the 3D mechanical axis and Akagi's line. The 3D deformities of the knee were determined by the relative position of the femorotibial coordinate system, and described by the tibial position relative to the femur. The anteversion of the femoral neck were calculated to evaluate the relationship between the valgus knee and hip region.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 39 - 39
1 Jan 2016
Suzuki K Hara N Mikami S Tomita T Iwamoto K Yamazaki T Sugamoto K Matsuno S
Full Access

Backgrounds

Most of in vivo kinematic studies of total knee arthroplasty (TKA) have reported on varus knee. TKA for the valgus knee deformity is a surgical challenge. The purposes of the current study are to analyze the in vivo kinematic motion and to compare kinematic patterns between weight-bearing (WB) and non-weight-bearing (NWB) knee flexion in posterior-stabilized (PS) fixed-bearing TKA with pre-operative valgus deformity.

Methods

A total of sixteen valgus knees in 12 cases that underwent TKA with Scorpio NRG PS knee prosthesis operated by modified gap balancing technique were evaluated. The mean preoperative femorotibial angle (FTA) was 156°±4.2°. During the surgery, distal femur and proximal tibia was cut perpendicular to the mechanical axis of each bone. After excision of the menisci and cruciate ligaments, balancer (Stryker joint dependent kinematics balancer) was inserted into the gap between both bones for evaluation of extension gap. Lateral release was performed in extension. Iliotibial bundle (ITB) was released from Gerdy tubercle then posterolateral capsule was released at the level of the proximal tibial cut surface. If still unbalanced, pie-crust ITB from inside-out was added at 1 cm above joint line until an even lateral and medial gap had been achieved. Flexion gap balance was obtained predominantly by the bone cut of the posterior femoral condyle. Good postoperative stability in extension and flexion was confirmed by stress roentgenogram and axial radiography of the distal femur. We evaluated the in vivo kinematics of the knee using fluoroscopy and femorotibial translation relative to the tibial tray using a 2-dimentional to 3-dimensional registration technique.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 28 - 28
1 Jan 2016
Matsumoto K Iwamoto K Mori N Ito Y Takigami I Terabayashi N Ogawa H Tomita T Akiyama H
Full Access

Background

The patterns and magnitudes of axial femorotibial rotation are variable due to the prosthesis design, ligamentous balancing, and surgical procedures. LCS mobile-bearing TKA has been reported the good clinical results, however, knee kinematics has not been fully understood. Therefore, we aimed to investigate the effects of the weight-bearing (WB) condition on the kinematics of mobile-bearing total knee arthroplasty (TKA).

Methods

We examined 12 patients (19 knees) implanted with a low contact stress (LCS) mobile-bearing TKA system using a two- to three-dimensional registration technique as previously reported [1]. All 12 patients were diagnosed with medial knee osteoarthritis. The in vivo kinematics of dynamic deep knee flexion under WB and non-WB (NWB) conditions were compared. We evaluated the knee range of motion, femoral axial rotation relative to the tibial component, anteroposterior translation, and kinematic pathway of the femorotibial contact point for both the medial and lateral sides.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 69 - 69
1 Jan 2016
Iwamoto K Tomita T Yamazaki T Futai K Tamaki M Miyamoto T Sugamoto K
Full Access

Introduction

Posterior cruciate ligament (PCL) preservation in total knee arthroplasty (TKA) is adovocated on the grounds that it provides better restoration of knee joint kinematics as opposed to PCL sacrifice. Mobile-bearing (MB) total knee prostheses have been in the market for a long time, but the PFC-Sigma Rotating Platform (RP) prosthesis (DePuy Orthopaedics, Inc, Warsaw, Ind) has been introduced in the market since 2000. Since, little is known about the in vivo kinematics of MB prostheses especially with cruciate retaining (CR). The objective of this study is to investigate the in vivo kinematics of MB RP-CR total knee arthroplasty during weight-bearing deep knee bending motion.

Patients and methods

We investigated the in vivo knee kinematics of 20 knees (17 patients) implanted with PFC-Sigma RP-CR. All TKAs were judged clinically successful (Hospital for Special Surgery scores >90), with no ligamentous laxity or pain. Mean patient age at the time of operation was 78.0 ± 6.0 years. Mean period between operation and surveillance was 15.0 ± 9.0 months. Under fluoroscopic surveillance, each patient did a wight-bearing deep knee bending motion. Femorotibial motion was analyzed using 2D/3D registration technique, which uses computer-assisted design (CAD) models to reproduce the spatial position of the femoral, tibial components from single-view fluoroscopic images. We evaluated the range of motion, axial rotation, and antero-posterior (AP) translation of the nearest point between the femoral and tibial component.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 9 - 9
1 Oct 2014
Tomita T Futai K Iwamoto K Kii Y Kiyotomo D Murase T Yoshikawa H Sugamoto K
Full Access

Patella resection has been the least controlled element of total knee arthroplasty (TKA). We have developed an intraoperative guide system involving a custom-made surgical template designed on the basis of a three-dimensional computer simulation incorporating computed tomography (CT) data for several years. This time we have applied this intraoperative guide system for the patella resection in TKA. We investigated the accuracy of CT-based patient-specific templating (PST) for patella resection using cadaveric knee joints in vitro.

To plan the corrective patella resection, we attempted to simulate a three-dimensional patella resection with the use of computer models of the patella. From CT images of the patella we obtained three-dimensional surface models of the patella by performing a three-dimensional surface generation of the bone cortex. After the patella resection using CT-based custom-made surgical templating instrumentation, CT scan was performed again and we compared the patella shape in three-dimensional patella bone model reconstructed from pre and after cut from CT data. We compared the accuracy of patella cut using three-dimensional patella bone model reconstructed from pre and after cut from CT data. Statistical analysis was performed using paired t test.

The difference between patella cut with CT-based custom-made surgical templating instrumentation and pre-operative planning were 0.8±1.2mm (medial side) and 0.1±1.4mm (lateral side). More than 60% resulted within 2mm from the pre-operative planning. There were significant differences both in flexion/extension, external/internal rotation and bone cut depth between CT-based custom-made surgical templating instrumentation and conventional instrument.

The results in this study demonstrated the usefulness of CT-based custom-made surgical templating instrumentation for patella resection in TKA.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 167 - 167
1 Jul 2014
Iwamoto K Tomita T Yamazaki T Sasaki A Kii Y Futai K Miyamoto T Fujii M Yoshikawa H Sugamoto K
Full Access

Summary

The effect of the geometry of the tibial polyethylene insert was investigated in vivo loaded conditions.

Introduction

The decision to choose CR (cruciate retaining) insert or CS (condylar stabilised) insert during TKA remains a controversial issue. Triathlon CS type has a condylar stabilised insert with an increased anterior lip that can be used in cases where the PCL is sacrificed but a PS insert is not used. The difference of the knee kinematics between CR and CS insert remains unclear. This study measured knee kinematics of deep knee flexion under load in two insert designs using 2D/3D registration technique.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 329 - 329
1 Mar 2013
Shimizu N Tomita T Patil S Yamazaki T Iwamoto K Kurita M Fujii M Lima DD Sugamoto K
Full Access

Background

The decision to choose CR (cruciate retaining) insert or CS (condylar stabilized) insert during TKA remains a controversial issue. Triathlon CS type has a condylar stabilized insert with an increased anterior lip that can be used in cases where the PCL is sacrificed but a PS insert is not used. The difference of the knee kinematics remains unclear. This study measured knee kinematics of deep knee flexion under load in two insert designs using 2D/3D registration technique.

Materials and methods

Five fresh-frozen cadaver lower extremity specimens were surgically implanted with Triathlon CR components (Stryker Orthopedics, Mahwah, NJ). CR insert with retaining posterior cruciate ligament were measured firstly, and then CS insert after sacrificing posterior cruciate ligament were measured. Under fluoroscopic surveillance, the knees were mounted in a dynamic quadriceps-driven closed-kinetic chain knee simulator based on the Oxford knee rig design. The data of every 10° knee flexion between 0° and 140° were corrected. Femorotibial motion including tibial polyethylene insert were analyzed using 2D/3D registration technique, which uses computer-assisted design (CAD) models to reproduce the spatial position of the femoral, tibial components from single-view fluoroscopic images. We evaluated the knee flexion angle, femoral axial rotation, and anteroposterior translation of contact points.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 82 - 82
1 Mar 2013
Iwamoto K Tomita T Yamazaki T Shimizu N Kurita M Futai K Kunugiza Y Yoshikawa H Sugamoto K
Full Access

Background

Various postoperative evaluations using fluoroscopy have reported in vivo knee flexion kinematics under weight bearing conditions. This method has been used to investigate which design features are more important for restoring normal knee function. The objective of this study is to evaluate the kinematics of a Low Contact Stress total knee arthroplasty (LCS TKA) in weight bearing deep knee flexion using 2D/3D registration technique.

Patients and methods

We investigated the in vivo knee kinematics of 6 knees (4 patients) implanted with the LCS meniscal bearing TKA (LCS Mobile-Bearing Knee System, Depuy, Warsaw, IN). Mean period between operation and surveillance was 170.7±14.2 months. Under fluoroscopic surveillance, each patient did a deep knee flexion under weight-bearing condition. Femorotibial motion was analyzed using 2D/3D registration technique, which uses computer-assisted design (CAD) models to reproduce the spatial position of the femoral, tibial components from single-view fluoroscopic images. We evaluated the knee flexion angle, femoral axial rotation, and antero-posterior translation of contact positions.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 255 - 255
1 Mar 2013
Masahiro K Tomita T Yamazaki T Kunugiza Y Shimizu N Iwamoto K Sugamoto K
Full Access

INTRODUCTION

The outcome after total knee arthroplasty is influenced by the postoperative orientation of the component. For accurate implantation, the surgeon performs a three dimensional preoperative planning and performs the surgery with reference to the anatomical bony landmarks. However, the assessment of orientation after TKA is generally performed on two dimensional radiographs. Despite the accurate implantation, radiographic assessment may not able to accurately evaluate the orientation of the component. CT images obtain a three dimensional information after TKA, but reliable identification of the anatomical bony landmarks remains the problem due to artifacts of metal components. In this study, we evaluate the three dimensional orientation of the component relative to the bone axis of anatomical landmarks using pre- and post-operative CT scanning.

PATIENTS AND METHODS

Two knees after primary TKA were assessed by one observer using preoperative and postoperative CT images. 3D models of pre-operative bone and post-operative bone with the exclusion of component data were constructed. Surface-based registration was performed by independently implementing the iterative closest point algorithm with the least-squares method to match the pre-operative bone model with the post-operative bone model. 3D surface model of the metal component from postoperative CT images was constructed. 3D surface model of the metal component was superimposed on original computer-aided design (CAD) data of the component using surface-based registration. The registration of the metal component was performed three times. Intra-observer reliability of the superimposed CAD models was evaluated. The orientation of the component was measured in euler angle between the axis of the superimposed CAD model and the bone axis of anatomical landmark.