header advert
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 124 - 124
4 Apr 2023
van Knegsel K Hsu C Huang K Benca E Ganse B Pastor T Gueorguiev B Varga P Knobe M
Full Access

The lateral wall thickness (LWT) in trochanteric femoral fractures is a known predictive factor for postoperative fracture stability. Currently, the AO/OTA classification uses a patient non-specific measure to assess the absolute LWT (aLWT) and distinguish stable A1.3 from unstable A2.1 fractures based on a threshold of 20.5 mm. This approach potentially results in interpatient deviations due to different bone morphologies and consequently variations in fracture stability. Therefore, the aim of this study was to explore whether a patient-specific measure for assessment of the relative LWT (rLWT) results in a more precise threshold for prediction of unstable fractures.

Part 1 of the study evaluated 146 pelvic radiographs to assess left-right symmetry with regard to caput-collum-angle (CCD) and total trochanteric thickness (TTT), and used the results to establish the rLWT measurement technique. Part 2 reevaluated 202 patients from a previous study cohort to analyze their rLWT versus aLWT for optimization purposes.

Findings in Part 1 demonstrated a bilateral symmetry of the femur regarding both CCD and TTT (p ≥ 0.827) allowing to mirror bone's morphology and geometry from the contralateral intact to the fractured femur. Outcomes in Part 2 resulted in an increased accuracy for the new determined rLWT threshold (50.5%) versus the standard 20.5 mm aLWT threshold, with sensitivity of 83.7% versus 82.7% and specificity 81.3% versus 77.8%, respectively.

The novel patient-specific rLWT measure can be based on the contralateral femur anatomy and is a more accurate predictor of a secondary lateral wall fracture in comparison to the conventional aLWT. This study established the threshold of 50.5% rLWT as a reference value for prediction of fracture stability and selection of an appropriate implant for fixation of trochanteric femoral fractures.


Bone & Joint Research
Vol. 6, Issue 4 | Pages 253 - 258
1 Apr 2017
Hsu C Lin C Jou I Wang P Lee J

Objectives

Osteoarthritis (OA) is the most common form of arthritis, affecting approximately 15% of the human population. Recently, increased concentration of nitric oxide in serum and synovial fluid in patients with OA has been observed. However, the exact role of nitric oxide in the initiation of OA has not been elucidated. The aim of the present study was to investigate the role of nitric oxide in innate immune regulation during OA initiation in rats.

Methods

Rat OA was induced by performing meniscectomy surgery while cartilage samples were collected 0, 7, and 14 days after surgery. Cartilage cytokine levels were determined by using enzyme-linked immunosorbent assay, while other proteins were assessed by using Western blot


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 110 - 110
1 Jan 2017
Lin C Lu T Zhang S Hsu C Frahm J Shih T
Full Access

Non-invasive, in vivo measurement of the three-dimensional (3-D) motion of the tibiofemoral joint is essential for the study of the biomechanics and functional assessment of the knee. Real-time magnetic resonance imaging (MRI) techniques enable the measurement of dynamic motions of the knee with satisfactory image quality and free of radiation exposures but are limited to planar motions in selected slice(s). The aims of the current study were to propose a slice-to-volume registration (SVR) method in conjunction with dual-slice, real-time MRI for measuring 3-D tibiofemoral motion; and to evaluate its repeatability during passive knee flexion.

Eight healthy young adults participated in the current study, giving informed written consent as approved by the Institutional Research Board. A 3-T MRI system (Verio, Siemens, Erlangen, Germany) incorporated with a neck matrix coil was used to collect the MRI data. A 3-D scanning using the VIBE sequence was used to collect the volumetric data of the knee at fully extended position (TR = 4.64 ms, TE = 2.3 ms, flip angle = 15°, in-plane resolution = 0.39 × 0.39 mm2 and slice thickness = 0.8 mm). A real-time MRI using the refocused radial FLASH sequence (TR = 4.3 ms, TE = 2.3 ms, flip angle = 20°, in-plane resolution = 1.0 × 1.0 mm2, slice thickness = 6 mm) was used to acquire a pair of image slices of the knee at a frame rate of 3 fps during passive flexion.

The volumetric MRI data sets were segmented for the femur and tibia/fibula to isolate the sub-volumes containing bone segments. A slice-to-volume registration method was then performed to determine the 3-D poses of the bones based on the spatial matching between sub-volume of the bones and the real-time image slices. The bone poses for all frames were used to calculate the rigid-body kinematics of the tibiofemoral joint in terms of the flexion/extension (FE), internal/external rotation (IR/ER), abduction/adduction (Abd/Add) and joint center translations along three anatomical axis of the tibia. The procedures were carried out five times for repeatability analysis. The standard deviation (SD) of the rigid-body kinematics for each frame from the five trials were calculated and then averaged across all frames to give quantitative measures of the repeatability of the kinematic variables.

The repeatability analysis showed that the mean±SD of the averaged SD in FE, Abd/Add and IR/ER components across all subjects were 0.25±0.09, 0.46±0.13 and 0.77±0.16 degrees, respectively. The corresponding values for the joint translations in anterior/posterior, proximal/distal and medial/lateral directions were 0.21±0.04, 0.11±0.03 and 0.43±0.09 mm.

An SVR method in conjunction with dual-slice real-time MRI has been successfully developed and its repeatability in measuring 3-D motion of the tibiofemoral joint evaluated. The results show that the proposed method is capable of providing rigid-body kinematics with sub-millimeter and sub-degree precision (repeatability). The proposed SVR method using real-time MRI will be a valuable tool for non-invasive, functional assessment of the knee without involving ionizing radiation, and may be further developed for joint stability assessment.