header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 132 - 132
4 Apr 2023
Callary S Abrahams J Zeng Y Clothier R Costi K Campbell D Howie D Solomon L
Full Access

First-time revision acetabular components have a 36% re-revision rate at 10 years in Australia, with subsequent revisions known to have even worse results. Acetabular component migration >1mm at two years following revision THA is a surrogate for long term loosening. This study aimed to measure the migration of porous tantalum components used at revision surgery and investigate the effect of achieving press-fit and/or three-point fixation within acetabular bone.

Between May 2011 and March 2018, 55 patients (56 hips; 30 female, 25 male) underwent acetabular revision THR with a porous tantalum component, with a post-operative CT scan to assess implant to host bone contact achieved and Radiostereometric Analysis (RSA) examinations on day 2, 3 months, 1 and 2 years. A porous tantalum component was used because the defects treated (Paprosky IIa:IIb:IIc:IIIa:IIIb; 2:6:8:22:18; 13 with pelvic discontinuity) were either deemed too large or in a position preventing screw fixation of an implant with low coefficient of friction. Press-fit and three-point fixation of the implant was assessed intra-operatively and on postoperative imaging.

Three-point acetabular fixation was achieved in 51 hips (92%), 34 (62%) of which were press-fit. The mean implant to host bone contact achieved was 36% (range 9-71%). The majority (52/56, 93%) of components demonstrated acceptable early stability. Four components migrated >1mm proximally at two years (1.1, 3.2, 3.6 and 16.4mm). Three of these were in hips with Paprosky IIIB defects, including 2 with pelvic discontinuity. Neither press-fit nor three-point fixation was achieved for these three components and the cup to host bone contact achieved was low (30, 32 and 59%).

The majority of porous tantalum components had acceptable stability at two years following revision surgery despite treating large acetabular defects and poor bone quality. Components without press-fit or three-point fixation were associated with unacceptable amounts of early migration.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_30 | Pages 52 - 52
1 Aug 2013
Howie D Kinninmonth A
Full Access

There has not been any published work quantifying the volume cement used/needed for knee arthroplasty. The number of mixes of cement used is at the discretion of the surgeon, based on their own experience/training.

The objective of this study was to quantify the volume of cement used for knee arthroplasty in our institution, and to observe variations between surgeons and implant size. The study then aimed to calculate the theoretical volumes required and observe the volume of cement actually implanted before commenting on cost implications of cement usage.

Prospective data for 85 consecutive knee arthroplasties performed by 9 consultants was examined. A single mix in this institution refers to 40g of Palacos R+G. Significant variation between surgeons was seen, with a range of one to three mixes being used. Several surgeons used one mix exclusively, independent of implant size, whilst others exclusively used two mixes. The departmental average was 1.4 mixes per knee. The total surface area of our largest implants (Size 8 Triathlon Femoral and Tibial components) was measured-108cm2 and compared to the volume of a single mix of cement −49 cm3. Even using the largest component size, a single mix will provide 4.5mm of uniform cement coverage. The volume of cement actually implanted during 10 knee arthroplasties was examined by weighing the residual cement. The average volume of cement implanted was 18cm3 per knee.

In 2009 1085 knee replacements were performed in this institution. If all surgeons in the department used a single mix of cement this could potentially save £16,357.46 per year. (Presuming average usage was 1.4 mixes per knee, 434 ‘extra’ mixes were used, costing £37.69 each) We conclude that a single mix of cement will cover the area required for all Triathlon implants and that less than half a mix (on average) is actually implanted.