header advert
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 62 - 62
1 Apr 2019
Hampp E Connors-Ehlert R Mahoney O
Full Access

Introduction

While TKA procedures have demonstrated clinical success, medial/lateral overhang of the femoral component in total knee arthroplasty (TKA) of ≥3mm may be associated with an increased risk of knee pain, and distal femoral size may vary across ethnic populations. The aim of this study was to determine and compare the prevalence of femoral component overhang among an inclusive (non-segmented) and Asian-identified (Asian-segmented) population, using a flexible intramedullary-rod, posterior referencing method.

Methods

CT Scans from bilateral lower limbs of skeletally mature subjects (981 inclusive, 267 Asian-identified), without bone pathology were prospectively acquired. Bones were segmented and landmarks were modeled using a flexible intramedullary-rod, posterior referencing method. Femoral components were virtually positioned by aligning the lateral implant edge with the lateral bone edge, where the anterior flange meets the anterior chamfer. Medial and lateral component overhang was measured at three zones: (1) intersection of the anterior flange and anterior chamfer (medial only), (2) anterior chamfer mid-line, and (3) distal face mid-line. The central tendency of the samples was determined using the observed mean and median and the 95% confidence interval.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 66 - 66
1 Apr 2019
Hampp E Scholl L Westrich G Mont M
Full Access

Introduction

While manual total knee arthroplasty (MTKA) procedures have demonstrated excellent clinical success, occasionally intraoperative damage to soft tissues can occur. Robotic-arm assisted technology is designed to constrain a sawblade in a haptic zone to help ensure that only the desired bone cuts are made. The objective of this cadaver study was to quantify the extent of soft tissue damage sustained during TKA through a robotic-arm assisted (RATKA) haptically guided approach and conventional MTKA approach.

Methods

Four surgeons each prepared six cadaveric legs for CR TKA: 3 MTKA and 3 RATKA, for a total of 12 RATKA and 12 MTKA knees. With the assistance of an arthroscope, two independent surgeons graded the damage of 14 knee structures: dMCL, sMCL, posterior oblique ligament (POL), semi-membranosus muscle tendon (SMT), gastrocnemius muscle medial head (GMM), PCL, ITB, lateral retinacular (LR), LCL, popliteus tendon, gastrocnemius muscle lateral head (GML), patellar ligament, quadriceps tendon (QT), and extensor mechanism (EM). Damage was defined as tissue fibers that were visibly torn, cut, frayed, or macerated. Percent damage was averaged between evaluators, and grades were assigned: Grade 1) complete soft tissue preservation to ≤5% damage; Grade 2) 6 to 25% damage; Grade 3) 26 to 75% damage; and Grade 4) 76 to 100% damage. A Wilcoxon Signed Rank Test was used for statistical comparisons. A p-value <0.05 was considered statistically significant.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 130 - 130
1 Apr 2019
Hampp E Scholl L Westrich GH Mont M
Full Access

Introduction

A careful evaluation of new technologies such as robotic-arm assisted total knee arthroplasty (RATKA) is important to understand the reduction in variability among users. While there is data reviewing the use of RATKA, the data is typically presented for experienced TKA surgeons. Therefore, the purpose of this cadaveric study was to compare the variability for several surgical factors between RATKA and manual TKA (MTKA) for surgeons undergoing orthopaedic fellowship training.

Methods

Two operating surgeons undergoing orthopaedic fellowship training, each prepared six cadaveric legs for cruciate retaining TKA, with MTKA on one side (3 knees) and RATKA on the other (3 knees). These surgeons were instructed to execute a full RATKA or MTKA procedure through trialing and achieve a balanced knee. The number of recuts and final poly thickness was intra-operatively recorded. After completion of bone cuts, the operating surgeons were asked if they would perform a cementless knee based on their perception of final bone cut quality as well as rank the amount of mental effort exerted for required surgical tasks. Two additional fellowship trained orthopaedic assessment surgeons, blinded to the method of preparation, each post-operatively graded the resultant bone cuts of the tibia and femur according to the perceived percentage of cut planarity (grade 1, <25%; grade 2, 25–50%; grade 3, 51–75%; and grade 4, >76%). The grade for medial and lateral tibial bone cuts was averaged and a Wilcoxon signed rank test was used for statistical comparisons. Assessment surgeons also determined whether the knee was balanced in flexion and extension. A balanced knee was defined as relatively equal medial and lateral gaps under relatively equal applied load.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 44 - 44
1 Dec 2017
Hampp E Scholl L Prieto M Chang T Abbasi A Bhowmik-Stoker M Otto J Jacofsky D Mont M
Full Access

While total knee arthroplasty has demonstrated clinical success, final bone cut and final component alignment can be critical for achieving a desired overall limb alignment. This cadaver study investigated whether robotic-arm assisted total knee arthroplasty (RATKA) allows for accurate bone cuts and component position to plan compared to manual technique. Six cadaveric specimens (12 knees) were prepared by an experienced user of manual total knee arthroplasty (MTKA), who was inexperienced in RATKA. For each cadaveric pair, a RATKA was prepared on the right leg and a MTKA was prepared on the left leg. Final bone cuts and final component position to plan were measured relative to fiducials, and mean and standard deviations were compared.

Measurements of final bone cut error for each cut show that RATKA had greater accuracy and precision to plan for femoral anterior internal/external (0.8±0.5° vs. 2.7±1.9°) and flexion/extension* (0.5±0.4° vs. 4.3±2.3°), anterior chamfer varus/valgus* (0.5±0.1° vs. 4.1±2.2°) and flexion/extension (0.3±0.2° vs. 1.9±1.0°), distal varus/valgus (0.5±0.3° vs. 2.5±1.6°) and flexion/extension (0.8±0.5° vs. 1.1±1.1°), posterior chamfer varus/valgus* (1.3±0.4° vs. 2.8±2.0°) and flexion/extension (0.8±0.5° vs. 1.4±1.6°), posterior internal/external* (1.1±0.6° vs. 2.8±1.6°) and flexion/extension (0.7±0.6° vs. 3.7±4.0°), and tibial varus/valgus* (0.6±0.3° vs. 1.3±0.7°) rotations, compared to MTKA, respectively, (where * indicates a significant difference between the two operative methods based on 2- Variances testing, with α at 0.05). Measurements of final component position error show that RATKA had greater accuracy and precision to plan for femoral varus/valgus* (0.6±0.3° vs. 3.0±1.4°), flexion/extension* (0.6±0.5° vs. 3.0±2.1°), internal/external (0.8±0.5° vs. 2.6±1.6°), and tibial varus/valgus (0.7±0.4° vs. 1.1±0.8°) than the MTKA control, respectively.

In general, RATKA demonstrated greater accuracy and precision of bone cuts and component placement to plan, compared to MTKA in this cadaveric study. For further confirmation, RATKA accuracy of component placement should be investigated in a clinical setting.