header advert
Results 1 - 3 of 3
Results per page:
The Bone & Joint Journal
Vol. 97-B, Issue 5 | Pages 649 - 653
1 May 2015
Hawi N Kendoff D Citak M Gehrke T Haasper C

Knee arthrodesis is a potential salvage procedure for limb preservation after failure of total knee arthroplasty (TKA) due to infection. In this study, we evaluated the outcome of single-stage knee arthrodesis using an intramedullary cemented coupled nail without bone-on-bone fusion after failed and infected TKA with extensor mechanism deficiency. Between 2002 and 2012, 27 patients (ten female, 17 male; mean age 68.8 years; 52 to 87) were treated with septic single-stage exchange. Mean follow-up duration was 67.1months (24 to 143, n = 27) (minimum follow-up 24 months) and for patients with a minimum follow-up of five years 104.9 (65 to 143,; n = 13). A subjective patient evaluation (Short Form (SF)-36) was obtained, in addition to the Visual Analogue Scale (VAS). The mean VAS score was 1.44 (SD 1.48). At final follow-up, four patients had recurrent infections after arthrodesis (14.8%). Of these, three patients were treated with a one-stage arthrodesis nail exchange; one of the three patients had an aseptic loosening with a third single-stage exchange, and one patient underwent knee amputation for uncontrolled sepsis at 108 months. All patients, including the amputee, indicated that they would choose arthrodesis again. Data indicate that a single-stage knee arthrodesis offers an acceptable salvage procedure after failed and infected TKA.

Cite this article: Bone Joint J 2015;97-B:649–53.


The Bone & Joint Journal
Vol. 96-B, Issue 11_Supple_A | Pages 93 - 95
1 Nov 2014
Gehrke T Kendoff D Haasper C

The use of hinged implants in primary total knee replacement (TKR) should be restricted to selected indications and mainly for elderly patients. Potential indications for a rotating hinge or pure hinge implant in primary TKR include: collateral ligament insufficiency, severe varus or valgus deformity (> 20°) with necessary relevant soft-tissue release, relevant bone loss including insertions of collateral ligaments, gross flexion-extension gap imbalance, ankylosis, or hyperlaxity. Although data reported in the literature are inconsistent, clinical results depend on implant design, proper technical use, and adequate indications. We present our experience with a specific implant type that we have used for over 30 years and which has given our elderly patients good mid-term results. Because revision of implants with long cemented stems can be very challenging, an effort should be made in the future to use shorter stems in modular versions of hinged implants.

Cite this article: Bone Joint J 2014;96-B(11 Suppl A):93–5.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 375 - 376
1 Jul 2008
Haasper C Colditz M Hurschler C Zeichen J Krettek C Jagodzinski M
Full Access

Introduction: Homogenous cell distribution and suffi-cient initial scaffold stability remain key issues for successful tissue engineered osteochondral constructs. The purpose of this study was to investigate the application of initial compression forces during the first 24 hours of cell culture followed by different stress patterns.

Methods: Bone marrow stromal cells were harvested from the iliac crest during routine trauma surgery. The cells were expanded in a 2-dimensional culture and then seeded into the biologic hybrid scaffold with a concentration of 1x10E6 cells per ml. Pressure and vacuum forces were applied in a specially developed glass kit. The constructs were exposed to two different protocols of compression combined as oteochondral matrices of CaReS (collagen I) and Tutobone (Ars Arthro, Esslingen, Germany and Tutogen Medical GmbH, Neunkirchen a. Br., Germany). Controls were resected osteochondral fragments from patients with articular fractures and uncompressed constructs. These effects were evaluated using light microscopy after standard staining to identify matrix penetration. Biomechanical tests were conducted, too using a modified biomechanical testing machine. The ‘constrained compression’, maximum load to failure, modulus, and strain energy density were determined.

Results: Histology: Penetration and cell distribution was demonstrated homogenous and vital, respectively. Mechanical tests showed a significant enhancement of primary matrix stability. The following stress patterns did not enhance significantly stability over seven days.

Discussion: The aim of this project was to investigate the response and cell distrubution of human bone marrow stromal cells seeded on a 3-dimensional biologic hybrid scaffold using compression and vacuum forces.

The integration of mechanical stimulation in the tissue engineering process may lead to a progress in the structural and biomechanical properties of these tissues and offers new possibilities in the management of bone injuries and degenerative diseases.