header advert
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 95 - 95
1 Dec 2020
Russo F Ambrosio L Peroglio M Wangler S Guo W Grad S Alini M Vadalà G Papalia R Denaro V
Full Access

The use of stem cells transplanted into the intervertebral disc (IVD) is a promising regenerative approach to treat intervertebral disc degeneration (IDD). The aim of this study was to assess the effect of a hydrogel composed of hyaluronic acid (HA) and platelet-rich plasma (PRP) loaded with human mesenchymal stem cells (hMSCs), on IVD extracellular matrix synthesis and nucleus pulposus (NP) marker expression in a whole IVD culture model.

HA was blended with batroxobin (BTX), a gelling agent activated in presence of PRP to construct a hydrogel. Bovine IVDs (n=25) were nucleotomised and filled with 1×106 or 2×106 hMSCs suspended in ∼150 mL of the PRP/HA/BTX hydrogel. IVDs harvested at day 0 and nucleotomised IVDs with no hMSCs and/or hydrogel were used as controls. hMSCs alone or encapsulated in the hydrogel were also cultured in well plates to examine the effect of the IVD microenvironment on hMSCs. After 1 week, tissue structure, scaffold integration and gene expression of anabolic (collagen type I, collagen type II and aggrecan), catabolic (matrix metalloproteinase 3 – MMP-3 –, MMP-13 and a disintegrin and metalloproteinase with thrombospondin motifs 4) and NP cell (cytokeratin 19, carbonic anhydrase 12, cluster of differentiation 24) markers were assessed.

Histological analysis showed a good integration of the scaffold within the NP area with cell repopulation. At the gene expression level, the hMSC-loaded hydrogels demonstrated to increase disc cell anabolic and catabolic marker expression and promoted hMSC differentiation towards a NP cell phenotype.

This study demonstrated that the HA/PRP/BTX may represent a valid carrier for hMSCs being capable of stimulating cell activity and NP marker expression as well as achieving a good integration with the surrounding tissues.