header advert
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 82 - 82
1 Aug 2013
Khamaisy S Gladnick BP Nam D Reinhardt KR Pearle A
Full Access

Lower limb alignment after unicondylar knee arthroplasty (UKA) has a significant impact on surgical outcomes. The literature lacks studies that evaluate the limb alignment after lateral UKA or compare it to alignment outcomes after medial UKA, making our understanding of this issue based on medial UKA studies. Unfortunately, since the geometry, mechanics, and ligamentous physiology are different between these two compartments, drawing conclusions for lateral UKAs based on medial UKA results may be imprecise and misleading. The purpose of this study was to compare the risk for limb alignment overcorrection and the ability to predict postoperative limb alignment between medial and lateral UKA. We evaluated the results of mechanical limb alignment in 241 patients with unicompartmental knee osteoarthritis who underwent medial or lateral UKA; there were 229 medial UKAs and 37 lateral UKAs. Mechanical limb alignment was measured in standing long limb radiographs pre and post-operatively, intra-operatively it was measured using a computer assisted navigation system. Between the two cohorts, we compared the percentage of overcorrection and the difference between post-operative alignment and alignment measured by the navigation system. The percentage of overcorrection was significantly higher in the lateral UKA group (11%), when compared to the medial UKA group (4%), (p= 0.0001). In the medial UKA group, the mean difference between the intraoperative “virtual” alignment provided by the navigation system, and the post-operative, radiographically measured mechanical axis, was 1.33°(±1.2°). This was significantly lower than the mean 1.86° (±1.33°) difference in the lateral UKA group (p=0.019). Our data demonstrated an increased risk of mechanical limb alignment overcorrection and greater difficulty in predicting postoperative alignment using computer navigation, when performing lateral UKAs compared to medial UKAs.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 108 - 108
1 Aug 2013
Khamaisy S Gladnick BP Nam D Reinhardt KR Pearle A
Full Access

Lower limb alignment after unicondylar knee arthroplasty (UKA) has a significant impact on surgical outcomes. The literature lacks studies that evaluate the limb alignment after lateral UKA or compare it to alignment outcomes after medial UKA, making our understanding of this issue based on medial UKA studies. Unfortunately, since the geometry, mechanics, and ligamentous physiology are different between these two compartments, drawing conclusions for lateral UKAs based on medial UKA results may be imprecise and misleading. The purpose of this study was to compare the risk for limb alignment overcorrection and the ability to predict postoperative limb alignment between medial and lateral UKA. We evaluated the results of mechanical limb alignment in 241 patients with unicompartmental knee osteoarthritis who underwent medial or lateral UKA; there were 229 medial UKAs and 37 lateral UKAs. Mechanical limb alignment was measured in standing long limb radiographs pre and post-operatively, intra-operatively it was measured using a computer assisted navigation system. Between the two cohorts, we compared the percentage of overcorrection and the difference between post-operative alignment and alignment measured by the navigation system. The percentage of overcorrection was significantly higher in the lateral UKA group (11%), when compared to the medial UKA group (4%), (p= 0.0001). In the medial UKA group, the mean difference between the intraoperative “virtual” alignment provided by the navigation system, and the post-operative, radiographically measured mechanical axis, was 1.33°(±1.2°). This was significantly lower than the mean 1.86° (±1.33°) difference in the lateral UKA group (p=0.019). Our data demonstrated an increased risk of mechanical limb alignment overcorrection and greater difficulty in predicting postoperative alignment using computer navigation, when performing lateral UKAs compared to medial UKAs.


The Bone & Joint Journal
Vol. 95-B, Issue 3 | Pages 401 - 406
1 Mar 2013
Rebolledo BJ Gladnick BP Unnanuntana A Nguyen JT Kepler CK Lane JM

This is a prospective randomised study comparing the clinical and radiological outcomes of uni- and bipedicular balloon kyphoplasty for the treatment of osteoporotic vertebral compression fractures. A total of 44 patients were randomised to undergo either uni- or bipedicular balloon kyphoplasty. Self-reported clinical assessment using the Oswestry Disability Index, the Roland-Morris Disability questionnaire and a visual analogue score for pain was undertaken pre-operatively, and at three and twelve months post-operatively. The vertebral height and kyphotic angle were measured from pre- and post-operative radiographs. Total operating time and the incidence of cement leakage was recorded for each group.

Both uni- and bipedicular kyphoplasty groups showed significant within-group improvements in all clinical outcomes at three months and twelve months after surgery. However, there were no significant differences between the groups in all clinical and radiological outcomes. Operating time was longer in the bipedicular group (p < 0.001). The incidence of cement leakage was not significantly different in the two groups (p = 0.09).

A unipedicular technique yielded similar clinical and radiological outcomes as bipedicular balloon kyphoplasty, while reducing the length of the operation. We therefore encourage the use of a unipedicular approach as the preferred surgical technique for the treatment of osteoporotic vertebral compression fractures.

Cite this article: Bone Joint J 2013;95-B:401–6.