header advert
Results 1 - 3 of 3
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 40 - 46
1 May 2024
Massè A Giachino M Audisio A Donis A Giai Via R Secco DC Limone B Turchetto L Aprato A

Aims

Ganz’s studies made it possible to address joint deformities on both the femoral and acetabular side brought about by Perthes’ disease. Femoral head reduction osteotomy (FHRO) was developed to improve joint congruency, along with periacetabular osteotomy (PAO), which may enhance coverage and containment. The purpose of this study is to show the clinical and morphological outcomes of the technique and the use of an implemented planning approach.

Methods

From September 2015 to December 2021, 13 FHROs were performed on 11 patients for Perthes’ disease in two centres. Of these, 11 hips had an associated PAO. A specific CT- and MRI-based protocol for virtual simulation of the corrections was developed. Outcomes were assessed with radiological parameters (sphericity index, extrusion index, integrity of the Shenton’s line, lateral centre-edge angle (LCEA), Tönnis angle), and clinical parameters (range of motion, visual analogue scale (VAS) for pain, Merle d'Aubigné-Postel score, modified Harris Hip Score (mHHS), and EuroQol five-dimension five-level health questionnaire (EQ-5D-5L)). Early and late complications were reported.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 28 - 28
23 Jun 2023
Massè A Giachino M Audisio A Donis A Secco D Turchetto L Limone B Via RG Aprato A
Full Access

Ganz's studies made it possible to address joint deformities on both femoral and acetabular side brought by the Legg-Calvè-Perthes disease (LCPD). Femoral head reduction osteotomy (FHRO) was developed to improve joint congruency along with periacetabular osteotomy (PAO). The purpose of this study is to show the clinical and morphologic outcomes of the technique, and an implemented planning approach.

From 2015 to 2023, 13 FHROs were performed on 11 patients for LCPD, in two centers. 11 of 13 hips had an associated PAO. A specific CT and MRI-based protocol for virtual simulation of the corrections was developed. Outcomes were assessed with radiographic parameters (sphericity index, extrusion index, integrity of the Shenton's line, LCE angle, Tonnis angle, CCD angle) and clinical parameters (ROM, VAS, Merle d'Aubigné-Postel score, modified-HHS, EQ5D-5L). Early and late complications were reported.

The mean follow-up was 40 months. The mean age at surgery was 11,4 years. No major complications were recorded. One patient required a total hip arthroplasty. Femoral Head Sphericity increased from 45% to 70% (p < 0,001); LCE angle from 18° to 42,8° (p < 0,001); extrusion Index from 36,6 to 8 (p < 0,001); Tonnis Angle from 14,4° to 6,2° (p = 0.1); CCD Angle from 131,7 to 136,5° (p < 0,023). The VAS score improved from 3,25 to 0,75,(p = 0.06); Merle d'Aubigné-Postel score from 14.75 to 16 (p = 0,1); Modified-HHS from 65,6 to 89,05 (p = 0,02). The EQ 5D 5L showed significant improvements. ROM increased especially in abduction and extra-rotation.

FHRO associated with periacetabular procedures is a safe technique that showed improved functional, clinical and morphologic outcomes in LCPD. The newly introduced simulation and planning algorithm may help to further refine the technique.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 93 - 93
1 Apr 2018
Boffano M Pellegrino P Ratto N Giachino M Albertini U Aprato A Boux E Collo G Ferro A Marone S Massè A Piana R
Full Access

Introduction and Purposes

Custom made acetabular prosthesis are a valid option for the reconstruction after the resection of pelvic tumors. They should guarantee a stable and reliable reconstruction for the expected survival of the patient. Nevertheless in many cases periacetabular metastatic lesions have been compared to high grade (IIIA-B) Paprosky defects, but treated with low or intermediate longevity implants. Some complex post-traumatic scenarios or total hip arthroplasty (THA) multiple failures need a reconstruction according to oncologic criteria to fill in the huge defect and to obtain an acceptable function. The aim of the study is to compare 3D custom-made implants for tumors and for THA failures.

Materials and Methods

Three custom-made implants after tumor resection (group A: 1 chondroblastic osteosarcoma, 1 bifasic synovialsarcoma, 1 high grade chondrosarcoma) were evaluated and compared to 3 acetabular complex reconstructions after non-oncologic bone defect (group B: 3 cases of aseptic loosening after at least 2 revisions). All the implants were case-based designed, 3D printed, and realized with porous or trabecular surfaces on a Titanium base prosthesis. Age range 16–70 ys in oncologic patients and 60–75 ys in non-oncologic patients. The bone defect to be reconstructed after tumor resection was classified according to Enneking zones (1 type 1-2-3 resection, 1 type 2 resection, 1 partial type 2 resection). Non-oncologic cases were comparable in term of remaining bone stock and classified according to Paprosky classification for acetabular defects as 1 type IIIA an 2 type IIIB. Complications, MSTS functional score, necessity of walking-aids were evaluated at minimum follow up of 1 year.