header advert
Results 1 - 6 of 6
Results per page:
Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 92 - 92
1 Mar 2008
Boyer M Gelberman R Raaii F
Full Access

Surgical results following proximal row carpectomy modified with proximal capitate resection and dorsal capsule interposition are presented. A consecutive cohort of thirteen patients was operated upon, and outcomes measured by radiograph, physical examination and DASH questionnaire. AROM values of 50° to 105° for the flexion/extension arc, restoration of grip strength to 72% of the contralateral extremity, and an improved functional outcome can be expected; and patients’ perceptions of functional outcome, as measured by the DASH, are significantly improved as early as six weeks. The results of PRC with interposition for stages II and III SLAC wrist were uniformly favorable.

Eaton has described two modifications to the proximal row carpectomy (PRC) procedure: partial capitate resection and dorsal capsular interpositional arthroplasty. The objective is to enlarge the radiocarpal interface to form a broad mobile pseudoarthrosis that would disperse compressive forces across the wrist more effectively. We present the first consecutive cohort of patients (n=13) who have undergone this procedure,

We extend the indications for PRC in this series to include those wrists with stage III SLAC deformity; approximately 67% of wrists had capitolunate arthritis.

AROM values of 50° to 105° for the flexion/extension arc, restoration of grip strength to 72% of the contralateral extremity, and an improved functional outcome can be expected from PRC with dorsal capsular interpositional arthroplasty.

Patients’ perceptions of functional outcome, as measured by the DASH, are significantly improved as early as six weeks following the procedure.

Mean flexion/extension arc achieved was 86° (range, 50° to 105°). Radial deviation averaged 13° (range, 10° to 20°), and ulnar deviation averaged 21° (range, 15° to 25°). Grip strength averaged 72% of the contralateral extremity. The mean decline in the revised carpal height ratio was 24%. The mean DASH score was 20.8 (range, 10 to 29). Visual analog pain improved from 9.25 to 2.67 on average, with one patient reporting no pain with heavy exertion.

Patients were evaluated by active range of motion ; grip and pinch strength; radiographs; subjective analog pain; and DASH questionnaire.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_II | Pages 170 - 170
1 Feb 2004
Ditsios K Burns M Boyer M Gelberman R Silva M
Full Access

Introduction: Recent in vivo studies of flexor tendon midsubstance healing have indicated that during the first 10 days after injury and repair there is no increase in ultimate tensile force. In contrast, there is an increase of approximately 170% in the rigidity (stiffness) of the repair site and a decrease of more than 45% in the repair-site strain at 20 N force. The basis for the increase in rigidity during the early stages of tendon healing is not known, but may be due to either biological or mechanical factors. In particular, cyclic loading of the tendon repair site during post-operative rehabilitation may have a mechanical conditioning effect that increases the stiffness of the repair site independent of repair-site healing. Our objective was to determine whether or not cyclic loading of repaired flexor tendons causes an in increase in repair-site rigidity and whether or not this increase depends on the level of applied force. We simulated 10 days of passive motion rehabilitation by applying 6000 loading cycles to repaired flexor tendons ex vivo at force levels generated during passive motion rehabilitation. We then evaluated the tensile mechanical properties. We hypothesized that cyclic loading causes an increase in repair-site rigidity and a decrease in repair-site strain.

Materials and Methods Forty-eight flexor digitorum profundus (FDP) tendons with attached distal phalanges were obtained from twelve hindlimbs of six adult mongrel dogs. Specimens were randomly assigned to one of three groups: control (no loading), low-force (5 N) cyclic loading or high force (17 N) cyclic loading. Tendons were transected in Zone II, 4 cm proximal to the insertion site. They were repaired using a four-strand modified Kessler technique with double-stranded 4-0 Supramid suture (S. Jackson) supplemented with a running peripheral suture of 6-0 Prolene (Ethicon). For cyclic loading, the distal phalanx and proximal tendon stump were placed in custom clamps attached to a materials testing machine (Instron 8500R). Tendons in the low-force and high-force groups were loaded for 6000 cycles at 2 Hz from 0.5 N to peak forces of 5 and 17 N, respectively. The force levels were chosen to match the peak tendon forces that were measured in vivo for low- and high-force passive motion rehabilitation protocols of the canine forelimb; 6000 cycles were used to simulate the number of cycles applied during a 10-day period of rehabilitation (600 cycles/day). Specimens in the control group were sham loaded for an equivalent period of time (50 minutes). After cyclic loading, specimens were allowed to recover for 1 hour and then tested to failure in tension. From plots of force versus repair-site strain we determined ultimate (maximum) force (N), repair-site rigidity (N/[mm/mm]) and repair-site strain (%) at 20 N force. One-way analysis of variance was used to determine the effect of loading on tensile properties.

Results: Specimens subjected to high-force cyclic loading had significantly increased rigidity compared to specimens in the low-force and control groups. Rigidity in the high-force group was increased by 100% compared to control. Similarly, repair-site strain at 20 N was decreased by 50% in the high-force group compared to control group. Ultimate force was increased in the high force group compared to control (p = 0.02; Table), but the magnitude of the increase was only 13%. There were no significant differences between the low-force and control groups (p > 0.05).

Discussion: Based on our findings, we conclude: 1) Repair-site rigidity is increased by 100% and repair-site strain decreased by 50% following 6000 cycles of high-force (17 N) loading. In contrast, ultimate force is changed only slightly (13%) by high-force loading. 2) Mechanical conditioning of the repair site by repetitive forces applied during rehabilitation may have a consequence that has not been noted previously, i.e. it leads to increases in rigidity and decreases in strain. This effect may explain in part the changes in tensile properties observed after only 10 days of healing in vivo. 3) The lack of effect of low-force (5 N) loading on repair-site rigidity and strain is in contrast to the previous in vivo findings in which rigidity increased in the low-force rehabilitation group. This discrepancy suggests that the observed in vivo changes can not be explained entirely by mechanical conditioning effects. 4) Therefore, both biological and mechanical factors are likely to play an important role in the rapid changes in repair-site mechanical properties that occur following flexor tendon injury and repair.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 242 - 242
1 Nov 2002
Gelberman R
Full Access

Two views of tendon healing’s capability have prevailed since the early 1940’s. This presentation will outline the change in perspective regarding the primary tendon repair potential of intrasynovial flexor tendons and the clinical innovations that have been devised to reduce the inflammatory response and to improve the functional and structural characteristics of repair. Specifically, advanced suture, rehabilitation, and salvage techniques for tendon injuries will be discussed.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 248 - 248
1 Nov 2002
Gelberman R
Full Access

This presentation will provide an update of peripheral nerve anatomy and the classification of injury with pertinent clinical examples of each type. Recommendations for primary and secondary nerve suture and repair techniques for nerve injuries with and without segmental loss will be described.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 243 - 243
1 Nov 2002
Gelberman R
Full Access

The ligamentous anatomy of the carpus has been well described in recent years. This presentation will review the most important fundamental aspects of carpal anatomy, the presentation and clinical evaluation of the injured wrist, and the management of the most common carpal abnormalities. Specifically, acute and chronic scapholunate instability, dynamic scapholunate instability, and perilunate dislocations will be reviewed. In addition, the characteristic sequence of scapholunate advanced collapse arthritis and its recommended treatment will be described.


The Journal of Bone & Joint Surgery British Volume
Vol. 69-B, Issue 1 | Pages 75 - 79
1 Jan 1987
Gelberman R Cohen M Desai S Griffin P Salamon P O'Brien T

Hip rotation in extension and flexion was studied in 23 patients with idiopathic intoeing gait. In extension all the hips had markedly increased medial rotation and limited lateral rotation, fulfilling the criteria of excessive femoral anteversion. In flexion, however, rotation varied widely; in one group of patients medial rotation remained greater than lateral, but in the second group lateral rotation was equal to or greater than medial. CT scans showed that the hips in the first group were significantly more anteverted than those in the second. Clearly measurement of hip rotation in extension alone does not provide a dependable indication of femoral anteversion in children with intoeing gait; rotation in flexion also needs to be measured.