header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 72 - 72
1 Dec 2021
Komperla S Giles W Flatt E Gandhi MJ Eyre-Brook AE Jones V Papanna M Eves T Thyagarajan D
Full Access

Abstract

Shoulder replacements have evolved and current 4th generation implants allow intraoperative flexibility to perform anatomic, reverse, trauma, and revision shoulder arthroplasty. Despite high success rates with shoulder arthroplasty, complication rates high as 10–15% have been reported and progressive glenoid loosening remains a concern.

Objectives

To report medium term outcomes following 4th generation VAIOS® shoulder replacement.

Methods

We retrospectively analysed prospectively collected data following VAIOS® shoulder arthroplasty performed by the senior author between 2014–2020. This included anatomical (TSR), reverse(rTSR), revision and trauma shoulder replacements. The primary outcome was implant survival (Kaplan-Meier analysis). Secondary outcomes were Oxford Shoulder Scores (OSS), radiological outcomes and complications.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_16 | Pages 16 - 16
1 Oct 2017
Gandhi MJ Moulton L Bolt A Cattell A Kelly C Gallacher P Ford DJ
Full Access

“Simulation”, “deliberate practice”, “rehearsal” have been used to describe safe acquisition and practice of skills before patient contact. Simulation resources are being introduced as a General Medical Council mandate. Individual simulators have shown multi-level evidence but there is no guidance to form a simulation curriculum. We devised a pilot arthroscopy course based on a 4-stage model. Stage 1: session covering anatomy, equipment, and skills required; Stage 2: practice on low fidelity simulators (Arthroscopic Skills Acquisition Tools (ASATs), ArthroBox, Synthetic Knee); Stage 3: practice on high fidelity simulators (Cadaveric Knee, Virtual Reality); Stage 4: assessment on performance intra-operatively. This study sought feedback on Stages 1–3 with the aim that the feedback will help identify how trainees wish to use simulators.

Five arthroscopic simulators were used in this one-day pilot course. Prior to commencing, participants were asked which simulator they felt would help them the most. Feedback on each stage, and individual simulator (Likert scale), and how trainees would like to be trained was prospectively collected.

Seven orthopaedic juniors took part. All felt the high-fidelity simulators will be the most useful. All stages were ranked with equal importance, whilst cadaveric, plastic, VR, Arthrobox and lastly ASATs ranked in order of realism respectively. For cadaveric arthroscopy trainees wished the trainers to be there all the time (6/7), whilst for VR all trainees wanted their trainers part of the time.

We have shown that junior trainees value a structured method of skills acquisition and have identified that high fidelity simulation requires trainers to be present to provide relevant feedback. Such feedback mechanisms need to be incorporated in any curriculum so that simulation tools are not seen as a standalone training method.